BMJ Open

BMJ Open

Placebo effects in trials evaluating 12 selected minimally invasive interventions: a systematic review and metaanalysis.

Journal:	BMJ Open
Manuscript ID:	bmjopen-2014-007331
Article Type:	Research
Date Submitted by the Author:	29-Nov-2014
Complete List of Authors:	HOLTEDAHL, ROBIN; Fram Rehabilition Centre, Tjomsland, Ole; South-Eastern Norway Regional Health Authority, Division of Quality and Specialist Areas Brox, Jens; Oslo University Hospital, Orthopaedic
Primary Subject Heading :	Evidence based practice
Secondary Subject Heading:	Evidence based practice, Ethics, Research methods, Surgery
Keywords:	Quality in health care < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Health economics < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Clinical trials < THERAPEUTICS, MEDICAL ETHICS, PAIN MANAGEMENT
	·

SCHOLARONE[™] Manuscripts

Placebo effects in trials evaluating 12 selected minimally invasive interventions: a systematic review and metaanalysis.

Robin Holtedahl, Jens Ivar Brox, Ole Tjomsland

Fram Rehabilitation Centre, Rykkinveien 100, 1349 Rykkin, Norway Robin Holtedahl Consultant Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Box 4956 Nydalen, 0424 Oslo, Norway Jens Ivar Brox Professor South-Eastern Norway Regional Health Authority, PB 404, 2303 Hamar, Norway Ole Tjomsland Director of Quality and Specialist Areas

; robi-hol@on... Correspondence to: Dr Robin Holtedahl; robi-hol@online, telephone +4790248973

Key words:

Placebo effects Invasive procedures Biomedical ethics Evidence based health care

Word count: 3783

Objectives To analyse the impact of placebo effects on outcome in trials of selected minimally invasive procedures, and to assess reported adverse events in both trial arms.

Design A systematic review and meta-analysis.

Data Sources and Study Selection We searched MEDLINE and Cochrane library to identify systematic reviews of musculoskeletal, neurological and cardiac conditions published between January 2009 and January 2014 comparing selected minimally invasive with placebo (sham) procedures. We searched MEDLINE for additional randomised controlled trials published between January 2000 and January 2014.

Data synthesis Effect sizes (ES) in the active and placebo arms in the trials' primary and pooled secondary endpoints were calculated. Linear regression was used to analyse the association between endpoints in the active and sham groups. Reported adverse events in both trial arms were registered.

Results We included 21 trials involving 2519 adult participants. For primary endpoints, there was a large clinical effect (ES ≥ 0.8) after active treatment in 12 trials and after sham procedures in 11 trials. For secondary endpoints, seven and five trials showed a large clinical effect, respectively. Three trials showed a moderate difference in ES between active treatment and sham on primary endpoints (ES ≥ 0.5) but no trials reported a large difference. No trials showed large or moderate differences in ES on pooled secondary endpoints. Regression analysis of endpoints in active treatment and sham arms estimated an R² of 0.78 for primary and 0.84 for secondary endpoints. Adverse events after sham were in most cases minor and of short duration.

Conclusion The generally small differences in effect size between active treatment and sham suggest that non-specific mechanisms, including placebo, are major predictors of the observed effects. Adverse events related to sham procedures were mainly minor and short-lived. Ethical arguments frequently raised against sham-controlled trials were generally not substantiated.

SUMMARY

Key messages

- The magnitude of change in the active treatment- and placebo arms varied greatly, but about 80% of the variance in effect size of active treatment could be predicted by placebo effects, regression to the mean or spontaneous improvement.
- Adverse events related to sham procedures were mainly minor and short-lived, and frequently outweighed by positive placebo effects.

Strengths and limitations

- Selection of trials with low risk of bias
- Calculation of effect sizes on primary and pooled secondary endpoints in both active treatment and sham arms.
- Heterogeneous interventions, outcome measures and timing of assessment.

BMJ Open

4

INTRODUCTION

It is normally assumed that medical practices are based on firm clinical evidence, and that new practices or techniques are introduced when superiority, or at least non-inferiority, has been demonstrated compared to established treatments. However, medical history reveals numerous examples contradicting this assumption. Forty-two percent of 146 medical practices were found to be reversed in a recent review analysing 10 years of publication in a high-impact medical journal.¹ Large effects of an intervention in initial reports are often spurious findings, while the vast majority may represent substantial overestimations.²

Even though surgical and other invasive techniques generally have reached a high degree of sophistication through the last decades, not all invasive procedures have lived up to expectations. Promising results in initial observational studies have in some cases led to widespread clinical implementation, in spite of lack of documented effectiveness.³ The reluctance to abandon contradicted medical practice is commonly ascribed to both culturally embedded medical practices and different forms of vested interests.⁴⁵ The continuation of unnecessary and potentially harmful interventions leads to major costs for both patients and society.

The randomised placebo-controlled trial is considered the gold standard for evaluating the effects of pharmacological treatments. However, there are relatively few controlled studies in peer-reviewed surgical journals, and even fewer placebo (sham)-controlled studies.⁶⁻⁸ Ethical concerns raised by the potential for harm to participants are usually cited as the main obstacle to sham-controlled studies.⁹ Problems of a practical nature relate to patient blinding, differing technical expertise, the heterogeneity of the interventional techniques and variable outcome specifications, making standardisation difficult to achieve.¹⁰

A meaningful effect in clinical trials may result from a large effect in the active treatment group, a small effect in the placebo group, or a combination. Even though a placebo effect has been documented in a range of clinical conditions, there are few studies assessing the magnitude of the placebo effect in surgical procedures. In the present study, we analysed placebo-controlled trials of minimally invasive interventions in musculoskeletal, neurological and cardiac conditions. The aims were threefold: (a) to assess the magnitude of change in outcome from baseline to trial endpoint in both the active treatment and placebo (sham) arms, (b) to explore the contribution of non-specific factors, including placebo, to the outcome of active treatment, and (c) to assess the level of reported adverse effects in both trial arms.

METHODS

Search strategy and selection criteria

We first conducted electronic searches for randomised placebo-controlled trials of minimally invasive interventions for cardiac, neurological and selected musculoskeletal conditions, using MEDLINE and Cochrane library to identify systematic reviews published between January 2009 and January 2014. We defined minimally invasive procedures as interventions involving the introduction of a medical device, substance or other foreign material into the body through a cannula, catheter or arthroscope, thereby minimising damage to biological tissues at the point of entrance. We excluded open surgical and laparoscopic interventions. Where applicable, we used the "core clinical journals" filter in PubMed, which is an index of journals particularly relevant to practicing physicians. From the reviews, we selected randomised placebo-controlled trials published from January 2000 to January 2014 that according to the review fulfilled at least four of the following methodological criteria: random allocation, allocation concealment, blinding of participant, blinding of assessor and intention-to-treat analysis. We chose these criteria both because they were the most commonly used in the selected reviews, and because use of scales for assessing quality or risk of bias is explicitly discouraged in Cochrane reviews¹¹. Two of the authors (RH and JIB) independently assessed the five methodological criteria in the RCTs included from systematic reviews.

We next searched MEDLINE for additional randomised placebo-controlled trials published between January 2000 and January 2014. Two of the reviewers (OT and JIB) independently assessed the five criteria mentioned above in the additional RCTs that were identified from this search.

Only English language journals were included. We excluded crossover trials, trials that did not report results as means, standard deviation, standard error or confidence intervals in both active and sham-groups, as well as trials with only graphic representation of data. Details of the search strategy are shown in web appendix table 1 and web appendix figure 1. We give a short description of each procedure's introduction, therapeutic rationale and history in web appendix table 2. This review is reported in accordance with the PRISMA statement.¹²

Data extraction

We registered all continuous primary endpoints. In trials without continuous primary endpoints, with multiple endpoints or no defined primary endpoint, we selected an outcome related to pain or condition-specific endpoint. The heterogeneity of trials did not allow for use of pain as a primary outcome. We used the 5

RCTs' defined primary outcome to avoid bias introduced by choosing our own endpoint. We also registered secondary endpoints in order to avoid potential bias from selective reporting in the included trials. The included and excluded secondary endpoints are shown in web appendix table 3. Endpoints describing medication, radiographic or physiological variables, social or psychological function, were not included. For the Parkinson-trials, only endpoints in the off-medication state were registered. Results from the last follow-up until 12 months were extracted. The trials' protocol registration, funding source, description of sham intervention, sample size, disease duration, length of follow-up and reported adverse events in both trial arms were registered (tables 1 and 2).

Data synthesis

To assess clinically important change, we calculated effect size (ES, Cohen's d), based on the means and standard deviations (SD). We calculated ES both for the active and sham intervention to obtain information about the pre-to-post treatment change in both arms. Without first calculating ES of change in each trial arm, we would not be able to discern the relative contribution of placebo, which was one of the objectives of the study. Subtracting the average score after treatment from the average score before treatment and dividing the result by the average of the standard deviations before and after treatment calculated ES. An ES of 0.8 or more is assumed large, while an ES of 0.5 - 0.8 is considered moderate.¹³ In trials with multiple secondary endpoints we calculated the pooled mean ES, without weighting. Because of small sample sizes in most of the included trials, we calculated an adjusted ES in accordance with a recommended procedure.¹⁴ Unadjusted linear regression analyses were used to explore the association between outcome in the active and sham groups both for primary and pooled secondary endpoints. For this analysis, we used Medcalc Statistical Software version 12.7.4.0¹⁵

RESULTS

Selection of interventions

The searches provided sham-controlled trials of the following interventions: percutaneous laser revascularisation of myocardium for angina pectoris, closure of foramen ovale for migraine, arthroscopic meniscectomy for meniscal tears, debridement and injection of hyaluronic acid for symptomatic osteoarthritis of the knee and injection or transplantation of biologically active material for Parkinson's disease (human retinal pigmental cells, fetal nigral cells and Neurturin). Because of the large number of described interventions for neck- and back pain syndromes, we chose to restrict the analysis to sham-controlled trials of the following interventions: epidural injections of corticosteroids for sciatica

(caudal, interlaminar and transforaminal routes), percutaneous heating of the intervertebral disc for chronic low back pain (percutaneous intradiscal radiofrequency thermocoagulation and intradiscal electrothermal therapy) and vertebroplasty for vertebral body fractures. The searches provided no shamcontrolled trials of arthroscopic procedures other than knee conditions.

Study selection

The study selection process is summarised in web appendix figure 1. Web appendix table 1 shows the excluded trials and the reasons for exclusion. The search provided five systematic reviews, all identified through searches in MEDLINE, none were commercially funded.¹⁶⁻²⁰ It identified a total of 71 clinical trials, twelve of them were not identified from the systematic reviews. Forty-four trials were excluded for methodological reasons, principally risk of bias. Six additional trials were excluded because ES could not be calculated.²¹⁻²⁶ Finally, 21 clinical trials with a total of 2519 participants were included in the present review (table 1). Trial interventions in active treatment and sham arms are also shown.

Author	Protocol approval / funding (commercial, non- commercial).	Invasive procedure / indication	Sham intervention	Adverse events related to procedure, active treatment	Adverse events related to procedure, sham
Leon 2005	Food and Drug Administration / NC	Percutaneous myocardial laser revascularization /	Laser turned on but no procedure performed	MAE in hospital (high dose): 4.1%	MAE in hospital: 0
Salem 2004	Ethics committee / NC	intractable angina pectoris	No procedural AE		
Sihvonen 2013	Review board / NC	Arthroscopic partial meniscectomy / degenerate meniscal tear	Routine arthroscopy, simulation of meniscectomy by manipulation etc.	No MAE mAE: 6.6%	mAE: 2.99
Moseley 2002	Review Board / NC	Arthroscopic debridement / Knee osteoarthritis	Simulated arthroscopy preparation, intravenous anaesthesia, skin incisions, no instruments entered knee, knee manipulated	No procedural	AE
Pham 2004	Review Board /	Hyaluronic acid /	Intraarticular	No N	MAE

	NC	Knee osteoarthritis	injection of saline solution	Any mAE: 81.7%	Any mAE: 1.2%
Altman 2004	Ethics				MAE
	committee / C			mAE: 12.8%	mAE: 8%
Chevalier 2010	ClinicalTrials.org			No	MAE
	/C			mAE: 35,8%	mAE: 33,89
Kallmes 2009	Review Board /		Conscious sedation +		MAE
	NC		local anesthaesia,		
			pressure put on		mAE: 16%
			spine, simulation of	mAE: 14%	MAE: 10%
			odor with mixing of		
		Percutaneous	PMMA to imitate the		
		vertebroplasty with	smell during the		
		PMMA cement	active procedure		
Buchbinder	Ethics	injection / vertebral	Conscious sedation +	No proc	edural AE
2009	committee at	compression	local anesthaesia,		
	each	fracture	needle inserted to		
	participating		rest on the lamina,		
	center / NC		PMMA container		
			opened to imitate		
			the smell during the		
			active procedure		
Cohen 2012	Review Board /		2 ml sterile water at	NO	MAE
	NC		1-2 injection sites, transforaminal		
			approach	mAE:36%	mAE: 20%
Arden 2005	Ethics		2 mL saline into	No	MAE
	committee / NC		interspinous		
		Epidural injection of	ligament	mAE: 9%	mAE: 10%
Valat 2002	Ethics	corticosteroids /	2 mL saline into	No MAE	
	committee / NC	Sciatica	epidural space,	mAE: 6%	mAE: 8%
			interlaminar		
			approach		
lversen 2011	Ethics		Subcutaneous	Not re	ported
	committee / NC		injection of 2 mL		
			saline superficial to		
Freeman 2005	Ethics		the sacral hiatus	No	MAE
Freeman 2005	Ethics committee / C		17-gauge introducer needle inserted into	INO	MAE
			disc under		
		Intradiscal	fluoroscopic	mAE: 11%	mAE: 5%
		electrothermal	guidance, catheter		
		therapy (IDET) /	inserted but not		
		discogenic low back	connected to		
		pain	generator, both		
			subject and surgeon		
			blinded.		

Pauza 2003	Review Board / NC		17-gauge needle introduced onto the outer annulus, mock electrode passage shown on monitor, generator noises produced	Not re	ported
Kvarstein 2009	Ethics committee / NC	Percutaneous intradiscal radiofrequency thermocoagulation (PIRFT) / discogenic low back pain	17-gauge canula and RF-probe inserted into annulus, no RF current applied	Not re	ported
Olanow 2003	Review Board /	Fetal nigral	Scalp incisions,		MAE
	NC	transplantation, 4 donors / Parkinson's disease	partial thickness burr holes, no cell transplantation, 6 months low-dose cyclosporine	mAE (rate/patient day: 0,66	mAE (rate/ day: 0
Marks 2010	Review Board /	Gene delivery of	Scalp incisions,	MAE: 4	MAE:
	C	AAV2-Neurturin / Parkinson's disease	partial thickness burr holes, no intracranial injections	Most frequent mAE: headache: 68%	Most freque mAE: heada 50%
Gross 2011	Review Board / C	Transplantation of human retinal pigmental cells / Parkinson's disease	Scalp incisions, partial thickness burr holes, no cell transplantation	1 death MAE: 23%	0 dea MAE:
LeWitt 2011	Review Board /	Insertion of AAV-	Insertion of catheter	No	MAE
	c	GAD gene into subthalamic nucleus / Parkinson's disease	caudal to nucleus, infusion of saline	mAE (probably related to procedure): 56%	mAE (proba relate proce 14%
Dowson 2008	Ethics committee / C	Patent foramen ovale closure with STARFlex Septal Repair Implant / migraine	General anesthesia, skin incision in the groin	MAE (possibly or probably related to procedure): 11%	MAE (possi proba relate proce 4%

Fourteen trials from the systematic reviews fulfilled at least four of the five methodological criteria.^{27 28 31-42} Seven trials provided through searches in MEDLINE fulfilled the same criteria.^{29 30 43-47} All trials reported approval of study protocol prior to patient enrolment (table 1). Eight trials were

commercially funded.^{32 33 41 44-47} Most of the trials had few participants, ranging from 20 to 346 (median 80).

Clinical outcomes after active treatment and sham

Twelve of the 21 trials showed a large ES on primary endpoints after active treatment, while 11 trials showed a similar ES after the sham procedure (figure 1, table 2).

 Table 2. Effect size (ES) on primary and pooled secondary endpoints, showing differences between active treatment and sham arms.

active a cutilient and shall arms.				
Author / procedure	Limit disease duration / time to follow-up (months)	Trial arm / no of patients randomised		ES pooled secondary endpoints (no of endpoints)
Leon 2005 / Percutaneous			Exercise duration	
myocardial laser revascularization	None / 12		(s)	(10)
		Active / 98	0.23	0.60
		Sham / 102	0.22	0.54
ES active treatment vs sham			0.01	0.07
Salem 2004 / Percutaneous myocardial laser revascularization	None / 12		Exercise duration (s)	
		Active / 40	0.04	
		Sham / 42	0.08	
ES active treatment vs sham			-0.04	
Sihvonen 2013 / Arthroscopic partial meniscectomy	>3 / 12		Lysholm knee score	(4)
		Active / 70	0.86	0.58
		Sham / 76	1.03	0.58
ES active treatment vs sham			-0.17	0.00
Moseley 2002 / Arthroscopic debridement	None / 12		Knee Specific Pain Scale	(5)
		Active / 59	0.54	0.11
		Sham / 60	0.85	0.20
ES active treatment vs sham			-0.31	-0.09
Pham 2004 / Hyaluronic acid			VAS Pain	(3)
	None / 12	Active / 131	1.48	1.35

1
2
3
3
4
5
6
7
0
0
9
10
11
12
12
13
14
15
16
17
18
10
19
20
21
$\begin{array}{c}2&3\\3&4\\5&6\\7&8\\9&10&1\\1&2&3&4\\1&5&1&6\\1&7&1&8&9\\2&2&2&2&2&2&2\\2&2&2&2&3&3&3&3&3&3&3&3&3$
22
23
24
25
26
27
20
20
29
30
31
32
22
33
34
35
36
37
20
38
39
40
41
42
42 43
43
44
45
46
47
48
49
50
51
52
52 53
54
55
56
57
58
59
~~

		Sham / 85	1.54	1.30	
ES active treatment vs sham			-0.06		0.05
Chevalier 2010 / Hyaluronic acid				Womac C function	
	None / 6	Active / 124	1.52	1.13	
		Sham / 129	1.18	1.07	
ES active treatment vs sham			0.34		0.06
Altman 2004 / Hyaluronic acid	None / 6		Womac pain	(2)	
		Active / 172	0.76	0.38	
		Sham / 174	0.85	0.53	
ES active treatment vs sham			-0.09		-0.15
Kallmes 2009 / Percutaneous vertebroplasty	<12 / 1	Ö.	Roland-Morris Disability Questionnaire	(7)	
		Active / 68	0.86	0,72	
		Sham / 63	0.81	0.63	
ES active treatment vs sham			0.05		0.09
Buchbinder 2009 / Percutaneous					
vertebroplasty	<12/6		Pain Score	(4)	
		Active / 38	0.83	0.46	
		Sham / 40	0.71	0.51	
ES active treatment vs sham			0.12		-0.05
Cohen 2012 / Epidural injection of corticosteroids	<6/1		NRS leg pain	(2)	
		Active / 28	1.51	0.88	5
		Sham / 30	0.82	0.39	
ES active treatment vs sham			0.69		0.49
Iversen 2011 / Epidural injection of corticosteroids	>3 / 12		Oswestry disability index		_
		Active / 36	1.68		
		Sham / 40	1.85		
			-0.17		
ES active treatment vs sham Arden 2005 / Epidural injection of			Oswestry disability		

11

	1	1	1	
		Active /120	1.42	1.14
		Sham / 108	1.44	1.21
ES active treatment vs sham			-0.02	-0.0
Valat 2002 / Epidural injection of corticosteroids	<6 / 1		VAS Pain	(3)
		Active / 42	1.85	1.10
		Sham / 43	1.47	0.99
ES active treatment vs sham			0.38	0.1
Freeman 2005 / Intradiscal electrothermal therapy	≥3 / 6		Oswestry disability index	(6)
		Active / 38	0.10	-0.03
		Sham / 19	- 0.07	0.12
ES active treatment vs sham			0.17	-0.1
Pauza 2003 / Intradiscal			Oswestry disability	
electrothermal therapy	>6 / 6		index	(3)
		Active / 32	0.94	0.90
		Sham / 24	0.35	0.46
ES active treatment vs sham			0.59	0.4
Kvarstein 2009 / Percutaneous				
intradiscal radiofrequency			Brief Pain	(_)
thermocoagulation	>6 / 12		Inventory	(5)
		Active / 10	0.34	0.54
		Sham / 10	0.23	0.24
ES active treatment vs sham			0.11	0.3
Olanow 2003 / Fetal nigral transplantation	None / 24		UPDRS 3 off	(5)
		Active / 12	0.04	-0.24
		Sham / 11	- 0.44	-0.19
ES active treatment vs sham			0.48	-0.0
Marks 2010 / Gene delivery of AAV2- Neurturin	≥60 / 12		UPDRS 3 off	(7)
		Active / 38	0.72	0.23
		Sham / 20	0.53	-0.05
ES active treatment vs sham			0.19	0.28

ES active treatment vs sham			0.28	0.04
		Sham / 73	0.45	1.06
	C	Active / 74	0.74	1.02
Dowson 2008 / Patent foramen ovale closure	None / 6		u .	Headache Impact Test
ES active treatment vs sham			0.58	0.08
		Sham / 21	0.42	0.21
		Active / 16	1.00	0.30
LeWitt 2011 / AAV-GAD gene into subthalamic nucleus	≥60 / 6		UPDRS 3 off	(7)
ES active treatment vs sham			0.21	0.02
		Sham / 36	0.88	0.06
		Active / 35	1.09	0.08
Gross 2011 / Transplantation of human retinal pigmental cells	≥60 / 12		UPDRS 3 off	(2)

VAS=Visual Analogue Scale; NRS=Numerical Rating Scale; UPDRS=Unified Parkinson's Disease Rating Scale; Womac=Western Ontario and McMaster Universities Osteoarthritis Index

ES on primary endpoints was moderate in three of the active treatment groups and in two of the sham groups.

On pooled secondary endpoints, a large ES was estimated in seven trials after active treatment and in five trials after sham, while a moderate ES was reported in four and three trials respectively (table 2).

In none of the trials did the actively treated group show a deterioration of primary endpoint during treatment, while this was the case for two of the sham groups (not reported to be related to the procedure). On secondary endpoints, deterioration occurred in two active treatment and two sham groups (table 2).

Differences in outcome between active treatment and sham Better results on primary endpoints were reported with active treatment compared to sham in 14 of the 21 trials, but the differences were small. Three trials (one epidural study³⁷, one discogenic pain study⁴⁰ and one Parkinson study⁴⁶) reported a moderate effect but none showed a large effect (figure 2, table 2). Seven trials reported a better primary endpoint outcome after sham than after active treatment. Nineteen trials reported secondary endpoints, 11 of these reported better outcome after active treatment than after sham, but in no case did the differences reach a moderate ES (figure 2, table 2). In twelve trials, the outcome was better for primary than for pooled secondary endpoints. This bore no relation to funding source.

On regression analyses, effect sizes in the sham groups predicted about 80 % of the variance of ES in the active treatment groups, both on primary and pooled secondary endpoints (figure 3 and 4).

Adverse events

Eighteen studies provided information about adverse events (AE) (table 1). Three of these trials reported no procedural adverse events in any of the groups.^{27 29 35} Major AEs were reported after active treatment in four trials^{28 44 45 47} including one death in one of the Parkinson studies.⁴⁵ In the sham groups, one trial⁴⁷ listed three major AEs possibly or probably related to the procedure, all thought to be caused by antiplatelet medication, none of them life-threatening. Apart from this trial, there were no major AEs in the sham groups. The reported minor AEs were all of limited duration.

DISCUSSION

Principal findings

Analysis of 21 sham-controlled trials of minimally invasive procedures showed that the effect sizes in the active arms were predicted by the effect sizes in the sham arms. There was a large ES on primary endpoints in about half of both the active and sham interventions, but none of the trials showed a large difference in ES between active treatment and sham groups either on primary or secondary endpoints.

The magnitude of the effect in each trial arm varied considerably, both between different procedures and between trials using the same procedure. For instance, in the active treatment groups, ES for primary endpoints varied from around zero to almost 2 after active treatment, and from about -0.4 to 1.5 after sham. Disparate outcomes were reported even between trials where technical parameters were similar. For instance, ES in the sham group in the three hyaluronic acid-trials varied by a factor of three, and in the epidural trials by a factor of two. This variability is probably related to differences in study design, duration of disability before inclusion, contextual factors, including the doctorpatient relationship as well as other factors. The close association between endpoints in the active treatment and sham groups on regression analyses suggests that a large part of the reported outcomes in the active treatment groups are

60

due to placebo effects, statistical regression to the mean or the natural course of the condition.

Strengths and limitations of study

It is our opinion that the calculation of effect sizes in both active treatment and placebo arms is a strength of the present study. This made it possible to assess the magnitude of change in both arms and the contribution of non-specific factors to change in the active treatment arms. The calculation of effect sizes provides an alternative assessment to probability estimates. Another strength of the study is the supplementary analyses of pooled secondary endpoints, enabling a more comprehensive evaluation than using primary endpoints alone. Reports of tactically motivated use of primary and secondary endpoints before publication in order to improve study results strengthen the argument for registering all relevant secondary endpoints.⁴⁸ Our finding that a majority of trials reported better results on primary than on secondary endpoints might lend support to such a hypothesis, although all trials, according to the authors, had sought and gained approval of the protocol from ethics committee and/ or review board (table 1).

The present review is limited to selected minimally invasive procedures in cardiology, neurology, and musculoskeletal conditions. While some procedures are, or have been, in wide clinical use, some are still in the clinical trial phase. Other sources of heterogeneity are variable duration of disease before inclusion, selection of outcome measures and time to follow-up. Results cannot be generalised to minimally invasive procedures in all medical disciplines, but a similar methodology could be applied to more systematic analyses of the role of non-specific effects in other minimally invasive procedures.

We applied principles from guidelines for conducting systematic reviews and meta-analyses and included an independent assessment of methodological trial quality by two of the authors. We cannot rule out that we have missed relevant trials because we limited our search to the Cochrane Library and MEDLINE, but most relevant trials are likely to have been identified by our searches. By preferentially selecting core journals and trials that had previously been methodologically evaluated in systematic reviews, it was our intention to reduce the risk of bias by excluding studies of low quality. We realize that this selection process and the fact that we relied on previous methodological evaluations may have contributed to unrecognised selection bias.

The use of ES as a measure of clinical effect assumes a normal distribution of the data. This does not necessarily apply in the included trials because the majority of them are small. Including trials reporting non-parametric data would however

15

necessitate other methods of statistical analysis. Small studies increase the likelihood of type-2 errors, though this is more relevant to probability estimates than analysis of ES.

Adequate blinding and lack of physiological effects?

We cannot rule out that treatment-specific effects in the actively treated groups may have jeopardised blinding, leading to overestimation of treatment effects through positive expectations. However, all the included trials gave a detailed description of the sham procedure, and both participant and assessor blinding seems to have been adequate.

On a more general level, it has been argued that sham procedures are not inert and may have specific physiological effects, thereby underestimating a treatment effect.⁴⁹ More recently, Bickett et al. hypothesised that epidural injection of small volumes of saline might have physiological effects.⁵⁰ However, it is to be noted that in the four selected epidural trials in the present study, improvements in the sham group were greater in the two trials using non-epidural saline than in those using epidural saline, making a physiological effect less likely. In our opinion, physiological effects of the sham interventions are also unlikely in the remaining procedures.

Surgery and other invasive procedures are commonly believed to be associated with enhanced placebo effects, a phenomenon coined mega-placebo.⁵¹ In spite of their heterogeneous nature, the 21 selected trials share a medicotechnological context in which an a priori enhanced placebo response could be expected. If an ES >0.8 is considered as mega-placebo, half of the included sham interventions reached this level. Factors such as the level of enthusiasm and conviction conveyed by the therapist, the impression of advanced procedures and the extent to which these factors succeed in activating a placebo response are probably crucial in explaining the improvements after sham interventions and the correlation of endpoints in the active treatment and sham groups. Participants' perception of whether they received active treatment or sham has been shown to contribute more to clinical improvement than the biological effects per se.^{26 52}

Non-specific factors

The role of non-specific factors, primarily spontaneous remission or statistical regression-to-the-mean, in placebocontrolled studies is controversial.⁵³ A recent meta-analysis analysing 202 trials with an untreated group, spanning 60 different clinical conditions, found rather small differences between placebo and no treatment, with effect sizes in the range of 0.2 to 0.3.⁵⁴ Apart from acupuncture trials (mean ES 0.68), the authors did not include trials reporting the effectiveness of invasive procedures. Another meta-analysis studied the placebo effect of a range of treatments

60

(pharmacological, non-pharmacological and surgical) for osteoarthritis of the hand, hip and knee.⁵⁵ Of 198 included trials fourteen had a no-treatment arm. The mean ES in the placebo groups was about 0.5, while it was only slightly above zero in the no-treatment groups. The difference between the placebo and no-treatment groups was larger than the difference between the placebo and active treatment groups. Trials using injections, acupuncture and surgery had the largest placebo effects, and the effects were larger for subjective than objective endpoints. The authors concluded that there is a significant placebo effect on pain, stiffness and function in symptomatic osteoarthritis.

Because the trials in the present study did not include a notreatment arm (i.e. waiting list), we cannot rule out that the changes appearing during the trial period also reflect nonspecific factors, i.e. spontaneous improvement or regression to the mean. Such mechanisms would be expected to be most prominent in trials with brief illness duration before inclusion and with longer time to follow-up, while improvements in chronic, unremitting conditions such as Parkinson's disease would be more likely attributed to placebo. Interestingly, in three of the four included Parkinson trials, there were moderate to large improvements in the sham groups even at one-year follow-up.43-45 Other authors have also found improvements several years after sham surgery, indistinguishable from conventional surgery.^{26 56} This is in agreement with recent insights into the neurobiological effects of placebo and their relation to underlying psychological mechanisms, principally expectation and conditioning.⁵⁷

Are ethical objections to sham justified?

The use of sham in controlled surgical trials is a divisive issue, with scepticism, even frank opposition, being voiced by both ethics committees, involved surgeons and anaesthetists, and potential patients.⁵⁸ Ethical arguments include the inherent risks of sham procedures combined with the lack of obvious benefits to the participants. Barriers related primarily to feasibility include problems with patient and assessor blinding, differing technical expertise, the heterogeneity of the interventional techniques and variable outcome specifications, making standardization difficult to achieve. Existing ethical guidelines accept the role of placebo-controlled trials when certain conditions are met.⁵⁹ There must be genuine equipoise, i.e. conflicting or weak evidence of the effectiveness of a procedure. Blinding of both participants and assessors must be assured, and participants must freely consent to suspend knowledge of whether they are receiving sham or conventional treatment. The health risks and consequences of placebo or delayed treatment must be minimal, and outweighed by the societal importance of establishing the clinical utility of the intervention in question.60 61

17

1 2

> The selected trials gave a detailed description of adverse events in both active and sham-treated groups (table 1). The safety concerns frequently raised as an argument against the use of sham were generally not supported. Major adverse events related to the sham procedure were reported in only one of the trials⁴⁷ and they were short-lived and not life threatening. Minor adverse events were more frequent, but also of limited duration. Positive placebo-induced effects generally outweighed adverse events, thus weakening ethical arguments against the use of sham interventions. In our opinion, the consequences of the continued use of unproven invasive procedures are of a different magnitude. In the light of studies supporting the beneficial effects of sham procedures, at least for pain and Parkinson symptoms, research ethics committees should consider such factors in their risk-benefit assessments of planned sham controlled trials.62 63

Clinical implications.

The present results are pertinent to the ongoing discussion about wasteful and unproven medical practices, and underscore the necessity for a continual assessment of existing or novel unproven procedures. Minimally invasive techniques have lowered the threshold for interventions, and led to their application to a wider clinical spectrum (indication creep) without an ongoing evaluation of effectiveness or safety.⁴ The last two decades have seen dramatic increases in the use of several of the described procedures, as well as interventions we have not investigated, such as facet joint injections, radiofrequency neurotomy, acromioplasty, percutaneous coronary intervention and, more recently, robotic surgery. 64-69 In light of the results in the present study, placebo effects might well explain a large part of the purported effects of such procedures. When clinicians and regulators are faced with claims of large treatment effects for insufficiently tested procedures, their default mode should be watchful scepticism. The standards of the evaluation process before approval and reimbursement of devices and procedures need to be strengthened, and economic or regulatory incentives that perpetuate the use of undocumented or harmful procedures should be abrogated.

CONCLUSION

Sham-controlled trials are unique in their ability to discriminate between true treatment effects and non-specific effects. The results of the present study suggest that placebo and other non-specific effects explain a large part of their purported benefits. Further, results indicate that the risks of adverse events in sham-controlled trials are overrated and could be considered acceptable in view of the potential

personal harm and societal costs associated with unproven minimally invasive interventions.

Figure legends

Figure 1. Effect sizes of active treatment and sham, primary endpoints.

Figure 2. Differences in effect size between active treatment and sham.

Figure 3. Association between effect sizes of primary endpoints in active treatment and sham arms. Linear regression, 95% confidence intervals. N=21.

Figure 4. Association between effect sizes of pooled secondary endpoints in active treatment and sham arms. Linear regression, 95% confidence intervals. N=19.

References

1. Prasad V, Vandross A, Toomey C et al. A decade of

reversal: an analysis of 146 contradicted medical

practices. Mayo Clin Proc 2013;88:790-8.

2. Tiago V. Pereira TV, Horwitz RI et al. Empirical

Evaluation of Very Large Treatment Effects of Medical

Interventions. JAMA 2012;308:1676-84.

3. Roberts AL, Kewman DG, Mercier L et al. The power of

nonspecific effects in healing: implications for

psychosocial and biological treatments. Clin Psychol

Rev 1993;**13**:375-91.

 Garner S, Littlejohns P. Disinvestment from low value clinical interventions: NICEly done? BMJ 2011;**343**:d4519.

BMJ Open

 Scott IA, Elshaug AG. Foregoing low-value care: how much evidence is needed to change beliefs? *Intern Med J* 2013;43:107-9.

- Obremskey WT, Pappas N, Attallah-Wasif E et al. Level of evidence in orthopaedic journals. *J Bone Joint Surg Am* 2005;87:2632-8.
- Reeves B. Health-technology assessment in surgery. Lancet 1999;353:Suppl 1:S13-S15;
- Wenner DM, Brody BA, Jarman AF et al. Do surgical trials meet the scientific standards for clinical trials? J Am Coll Surg 2012;215:722-30.
- Ezekiel JE, Miller FG. The Ethics of Placebo-Controlled Trials — A Middle Ground. N Engl J Med 2001;345:915-9.
- Campbell MK, Entwistle VA, Cuthbertson BH et al.
 Developing a placebo-controlled trial in surgery: issues of design, acceptability and feasibility. *Trials* 2011;**12**:50
- 11. Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1.0.

http://handbook.cochrane.org; (11.11.2014)

 Liberati A, Altman DG, Tetzlaff J et al. The PRISMA statement for reporting systematic reviews and metaanalyses of studies that evaluate healthcare interventions: explanation and elaboration. *BMJ* 2009;**339**:b2700.

2	
3	
4	
5	
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	
7	
1	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
01	
21	
22	
21 22 23 24 25 26	
24	
25	
26	
20	
27 28 29 30 31 32 33 34 35 36 37 38 39	
28	
29	
30	
24	
31	
32	
33	
34	
35	
26	
30	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
49 50	
50	
51	
52	
53	
54	
54	
55	
56	
57	
58	
59	
60	

 Cohen J. Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Lawrence Erlbaum Associates, 1988.

- 14. Durlak JA. How to Select, Calculate, and Interpret Effect Sizes. *J Pediatr Psychol* 2009; **34**: 917-28.
- 15. MedCalc Software byba, Ostend, Belgium; http://www.medcalc.org; (08.03.2014).
- 16. Rutjes AWS, Jünl P, da Costa BR et al.
 Viscosupplementation for Osteoarthritis of the Knee. A
 Systematic Review and Meta-analysis. Ann Intern Med
 2012;157:180-91.
- 17. Pinto RZ, Maher CG, Ferreira ML et al. Epidural corticosteroid injections in the management of sciatica: a systematic review and meta-analysis. *Ann Intern Med* 2012;**157**:865-77.
- McGillion M, Cook A, Victor JC et al. Effectiveness of percutaneous laser revascularization therapy for refractory angina. *Vasc Health Risk Manag* 2010;6:735-47.
- 19. Helm S II, Deer TR, Manchikanti L et al. Effectiveness of thermal annular procedures in treating discogenic low back pain. *Pain Physician* 2012; **15**:E279-E304.
- 20. Shi MM, Cai XZ, Lin T et al. Is there really no benefit of_vertebroplasty_for osteoporotic vertebral fractures?
 A meta-analysis. *Clin Orthop Relat Res* 2012;**470**:2785-99.

 Petrella RJ, Cogliano A, Decaria J. Combining two hyaluronic acids in osteoarthritis of the knee: a randomized, double-blind, placebo-controlled trial. *Clin Rheumatol* 2008;27:975-81.

22. Lundsgaard_C, Dufour N, Fallentin E et al. Intra-articular sodium hyaluronate 2 mL versus physiological saline 20 mL versus physiological saline 2 mL for painful knee osteoarthritis: a randomized clinical trial. *Scand J Rheumatol* 2008 ;**37**:142-50.

- 23. Karppinen J, Malmivaara A, Kurunlahti M et al. Periradicular infiltration for sciatica: a randomized controlled trial. *Spine* 2001; **26**:1059-67.
- 24. Freed CR, Greene PE, Breeze RE et al. Transplantation of embryonic dopamine neurons for severe Parkinson's disease. *N Engl J Med* 2001;**344**:710-9.
- 25. Gordon PH, Yu Q, Qualls C et al. Reaction time and movement time after embryonic cell implantation in Parkinson disease. Arch Neurol 2004;61:858-61.
- 26. McRae C, Cherin E, Yamazaki TG et al. Effects of perceived treatment on quality of life and medical outcomes in a double-blind placebo surgery trial. Arch Gen Psychiatry 2004; 61: 412-20.
- 27. Salem M, Rotevatn S, Stavnes S et al. Usefulness and safety of percutaneous myocardial laser revascularization for refractory angina pectoris. Am J Cardiol 2004;93:1086-91.

$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 36 \\ 37 \\ 38 \\ 39 \\ 40 \\ 41 \\ 42 \\ 43 \\ 44 \\ 45 \\ 46 \\ 47 \\ 48 \\ 49 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ $	 Leon MB, Kornowski R, Downey WE et al. A blinded, randomized, placebo-controlled trial of percutaneous laser myocardial revascularization to improve angina symptoms in patients with severe coronary disease. J Am Coll Cardiol 2005;46:1812-9. Moseley JB, O'Malley K, Petersen NJ et al. A controlled trial of arthroscopic surgery for osteoarthritis of the knee. N Engl J Med 2002;347:81-8. Sihvonen R, Paavola M, Malmivaara A et al. Arthroscopic partial meniscectomy versus sham surgery for a degenerative meniscal tear. N Engl J Med 2013;369:2515-24. Pham T, Le Henanff A, Ravaud P et al. Evaluation of the symptomatic and structural efficacy of a new_hyaluronic_acid compound, NRD101, in comparison with diacerein and placebo in a 1 year randomised controlled study in symptomatic knee osteoarthritis. Ann Rheum Dis 2004;63:1611-7. Altman RD, Akermark C, Beaulieu AD et al. Efficacy and safety of a single intra-articular injection of non-animal stabilized_hyaluronic_acid (NASHA) in patients with osteoarthritis of the knee. Osteoarthritis Cartilage 2004;12:642-9. Chevalier X, Jerosch J, Goupille P et al. Single, intra-
41 42	32. Altman RD, Akermark C, Beaulieu AD et al. Efficacy and safety of a single intra-articular injection of non-animal
45 46 47	osteoarthritis of the knee. Osteoarthritis
49	
55 56 57 58 59 60	

randomised, multicentre, double-blind, placebo controlled trial. *Ann Rheum Dis* 2010;**69**:113-9.

- 34. Kallmes DF, Comstock BA, Heagerty PJ et al. A randomized trial of vertebroplasty for osteoporotic spinal fractures. N Engl J Med 2009;361:569-79.
- 35. Buchbinder R, Osborne RH, Ebeling PR et al. A randomized trial of vertebroplasty for painful osteoporotic vertebral fractures. *N Engl J Med* 2009;**361**:557-68.
- 36. Iversen T, Solberg TK, Romner B et al. Effect of caudal epidural steroid or saline injection in chronic lumbar radiculopathy: multicentre, blinded, randomised controlled trial. *BMJ* 2011;**343**:d5278.
- 37. Cohen SP, White RL, Kurihara C et al. Epidural steroids, etanercept, or saline in subacute sciatica: a multicenter, randomized trial. *Ann Intern Med* 2012;**156**:551-9.
- 38. Arden NK, Price C, Reading I et al. A multicentre randomized controlled trial of_epidural_corticosteroid injections for sciatica: the WEST study. *Rheumatology* 2005;**44**:1399-406.
- Valat JP, Giraudeau B, Rozenberg S et al.Epidural corticosteroid injections for sciatica: a randomised, double blind, controlled clinical trial. *Ann Rheum Dis* 2003;62:639-43.

BMJ Open

1	
2	
3	
4	
5	
6	10 Dauga KI, Hawall C. Drawfuss Diatial A randomized
7	40. Pauza KJ, Howell S, Dreyfuss P et al. A randomized,
8	placebo-controlled trial of intradiscal electrothermal
9 10	
11	therapy for the treatment of discogenic low back pain.
12	Crime 1 2004 4-07 3E
13	Spine J 2004; 4 :27-35.
14	41. Freeman BJ, Fraser RD, Cain CM et al. A randomized,
15	
16	double-blind, controlled trial: intradiscal
17 18	electrothermal therapy versus placebo for the
19	electronierinal therapy versus placebo for the
20	treatment of chronic discogenic low back pain. Spine
21	
22	2005; 30 :2369-77.
23	42. Kvarstein G, Måwe L, Indahl A et al. A randomized
24	42. Kvarsteni G, Mawe L, Indani A et al. A fandomized
25 26	double-blind controlled trial of intra-annular
20 27	
28	radiofrequency thermal disc therapya 12-month
29	follow-up. Pain 2009; 145 :279-86.
30	
31	43. Olanow CW, Goetz CG, Kordower JH et al. A double-
32	
33 34	blind controlled trial of bilateral fetal nigral
35	transplantation in Parkinson's disease. Ann Neurol
36	
37	2003; 54 :403-14.
38	44 Martin MU In Dartus DT, Cifford Latiol, Considelitions of
39	44. Marks WJ Jr, Bartus RT, Siffert J et al. Gene delivery of
40 41	AAV2-neurturin for Parkinson's disease: a double-
42	
43	blind, randomised, controlled trial. Lancet Neurol
44	2010; 9 :1164-72.
45	2010,3.1104 / 2.
46	45. Gross RE, Watts RL, Hauser RA et al. Intrastriatal
47	
48 49	transplantation of microcarrier-bound human retinal
50	pigment epithelial cells versus sham surgery in patients
51	
52	with advanced Parkinson's disease: a double-blind,
53	
54	
55 56	
56 57	
58	
59	
60	

2	
3	
4	
4	
5	
6	
7	
0	
0	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
21	
$\begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 2 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 $	
23	
24	
25	
20	
20	
27	
28	
29	
20	
30	
31	
32	
33	
24	
34	
35	
36	
37	
20	
30	
39	
40	
41	
42	
43	
44	
45	
46	
-	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

randomised, controlled trial. *Lancet Neurol* 2011;10:509-19.
46. LeWitt PA, Rezai AR, Leehey MA et al. AAV2-GAD gene therapy for advanced Parkinson's disease: a doubleblind, sham-surgery controlled, randomised trial. *Lancet Neurol* 2011;10:309-19.
47. Dowson A, Mullen MJ, Peatfield R et al. Migraine Intervention With STARFlex Technology (MIST) trial: a prospective, multicenter, double-blind, sham-controlled trial to evaluate the effectiveness of patent foramen ovale closure with STARFlex septal repair implant to resolve refractory migraine headache.

Circulation 2008;**117**:1397-404.

- 48. Hannink G, Gooszen HG, Rovers MM. Comparison of registered and published primary outcomes in randomized clinical trials of surgical interventions. *Ann Surg* 2013;**257**:818-23.
- 49. Birch S. A review and analysis of placebo treatments, placebo effects, and placebo controls in trials of medical procedures when sham is not inert. J Altern Complement Med 2006;12:303-10.
- 50. Bicket MC, Gupta A, Brown CH $4^{\rm th}$ et al.

Epidural_injections for spinal pain: a systematic review and meta-analysis evaluating the "control" injections in randomized controlled trials. *Anesthesiology*. 2013;**119**:907-31.

 51. Kaptchuk TJ, Goldman P, Stone DA et al. Do medical devices have enhanced placebo effects? <i>J Clin Epidemiol</i> 2000;53:786-92. 52. Einvik G, Tjomsland O, Kvernebo K et al. Preoperative expectations and clinical outcome of transmyocardial laser treatment in patients with angina pectoris. <i>Tidsskr Nor Laegeforen</i> 2002;122:2102-4. 53. Turner JA, Deyo RA, Loeser JD et al. The importance of placebo effects in pain treatment and research. <i>JAMA</i> 1994;271:1609-14. 54. Hróbjartsson A, Gøtzsche PC. Placebo interventions for all clinical conditions. <i>Cochrane Database Syst Rev</i> 2010; CD003974. 55. Zhang W, Robertson J, Jones AC et al. The placebo effect and its determinants in osteoarthritis: meta-analysis of randomised controlled trials. <i>Ann Rheum Dis</i> 2008;67:1716-23. 56. Marchand S, Kupers RC, Bushnell MC et al. Analgesic and placebo effects of thalamic stimulation. <i>Pain</i> 2003;105:481-8. 57. Finniss DG, Kaptchuk TJ, Miller F et al. Biological,
analysis of randomised controlled trials. <i>Ann Rheum</i> <i>Dis</i> 2008; 67 :1716-23.
and placebo effects of thalamic stimulation. <i>Pain</i> 2003; 105 :481-8.

~	
2	
2	
3	
4	
<u>.</u>	
5	
$\begin{array}{c} 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 9\\ 20\\ 1\end{array}$	
υ	
7	
,	
8	
0	
9	
10	
10	
11	
10	
12	
10	
13	
14	
15	
10	
10	
17	
18	
10	
19	
20	
20	
21	
00	
22	
22	
23	
24	
~ -	
25	
26	
20	
27	
20 21 22 23 24 25 26 27 28 29 30 31 32	
28	
20	
29	
30	
50	
30 31 32 33 34 35 36 37 38	
00	
32	
33	
55	
34	
~-	
35	
26	
30	
37	
01	
38	
20	
39	
40	
41	
42 43	
43	
40	
44	
45	
45	
46	
40	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

of design, acceptability and feasibility. Trials

2011;**12**:50. doi: 10.1186/1745-6215-12-50.

59. Snyder L. Review of the American College of Physicians Ethics Manual, Sixth Edition. *Ann Intern Med*

2012;**156**(1_Part_2):73-104.

- Flum DR. Interpreting surgical trials with subjective outcomes: avoiding UnSPORTsmanlike conduct. JAMA 2006;296:2483-5.
- 61. Heckerling PS. Placebo surgery research: a blinding imperative. *J Clin Epidemiol* 2006;59:876-80.
- 62. Brim RL, Miller FG. The potential benefit of the placebo effect in sham-controlled trials: implications for risk-benefit assessments and informed consent. J Med Ethics 2013;39:703-7.
- 63. Redberg RF. Sham controls in medical device trials. <u>N</u> Engl J Med 2014;**371**:892-3.
- 64. Haahr JP, Østergaard S, Dalsgaard J et al. Exercises versus arthroscopic decompression in patients with subacromial impingement: a randomised, controlled study in 90 cases with a one year follow up. *Ann Rheum Dis* 2005;**64**:760-4.
- 65. Ketola S, Lehtinen J, Rousi T et al. No evidence of longterm benefits of arthroscopicacromioplasty in the treatment of shoulder impingement syndrome: Fiveyear results of a randomised controlled trial. *Bone Joint Res* 2013;**2**:132-9.

BMJ Open

2	
3 4 5	
5	
6	
6 7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
9 10 11 12 13 14 15 16 17 18 19	
10	
19	
20 21	
21	
23	
24	
23 24 25	
26	
26 27 28 29 30 31 32 33 34	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43 44	
44 45	
46	
40 47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

66. Herrlin S, Hållander M, Wange P et al. Arthroscopic or conservative treatment of degenerative medial meniscal tears: a prospective randomised trial. *Knee Surg Sports Traumatol Arthrosc* 2007;**15**:393-401.

67. Yu E, Cil A, Harmsen WS et al. Arthroscopy and the dramatic increase in frequency of anterior acromioplasty from 1980 to 2005: an epidemiologic study. *Arthroscopy* 2010;**26**,Supplement:S142-7.

 Vitale MA, Arons RR, Hurwitz S et al. The rising incidence of acromioplasty. *J Bone Joint Surg Am* 2010;**92**:1842-50.

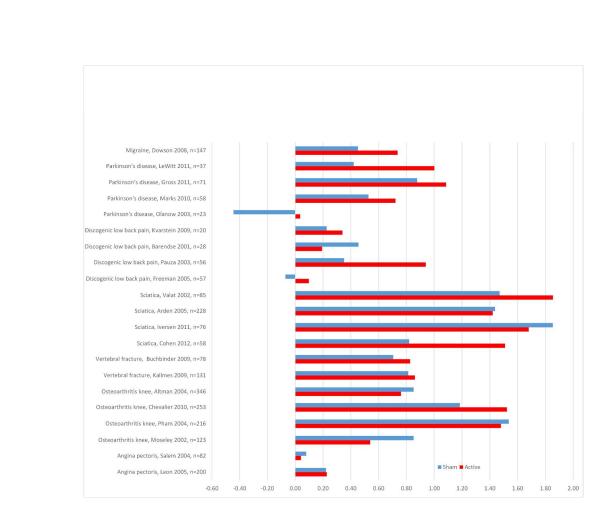
69. Brox JI, Staff PH, Ljunggren AE et al. Arthroscopic surgery compared with supervised exercises in patients with rotator cuff disease (stage II impingement syndrome). *BMJ* 1993;**307**:899-903.

 μα...

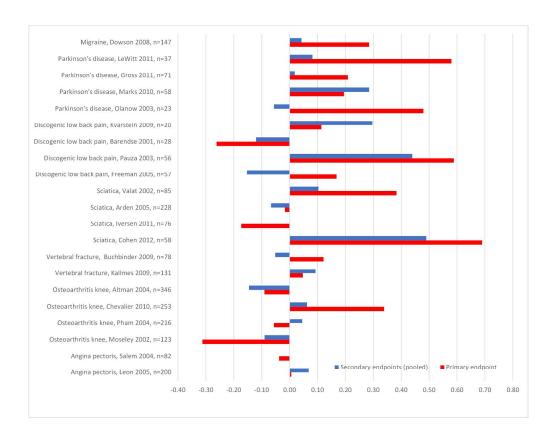
 impingement syndrome). bm..

 Contributors: RH initiated and planned the project and searched databases. JIB and OT assisted in developing search strategies. Article screening and data extraction was carried out by RH. Quality of data extraction and checking was carried out by JIB and OT. Statistical analysis was undertaken by RH, who also wrote the draft. OT and JIB reviewed the draft and contributed to manuscript revisions. RH is the guarantor for this study.

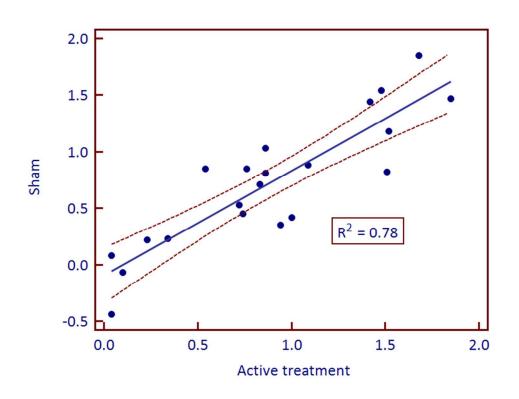
Funding sources: None.

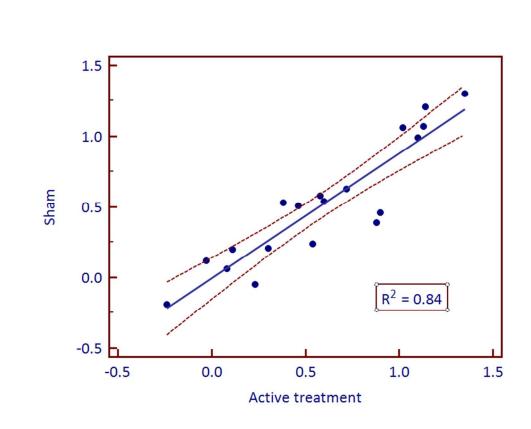

All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf and declare: no support from any organisation for the submitted work; no financial relationships with any organisations that might have an interest in the submitted work in the previous three years; no other relationships or activities that could appear to have influenced the submitted work.

Ethical approval: Ethical approval was not required for this work.

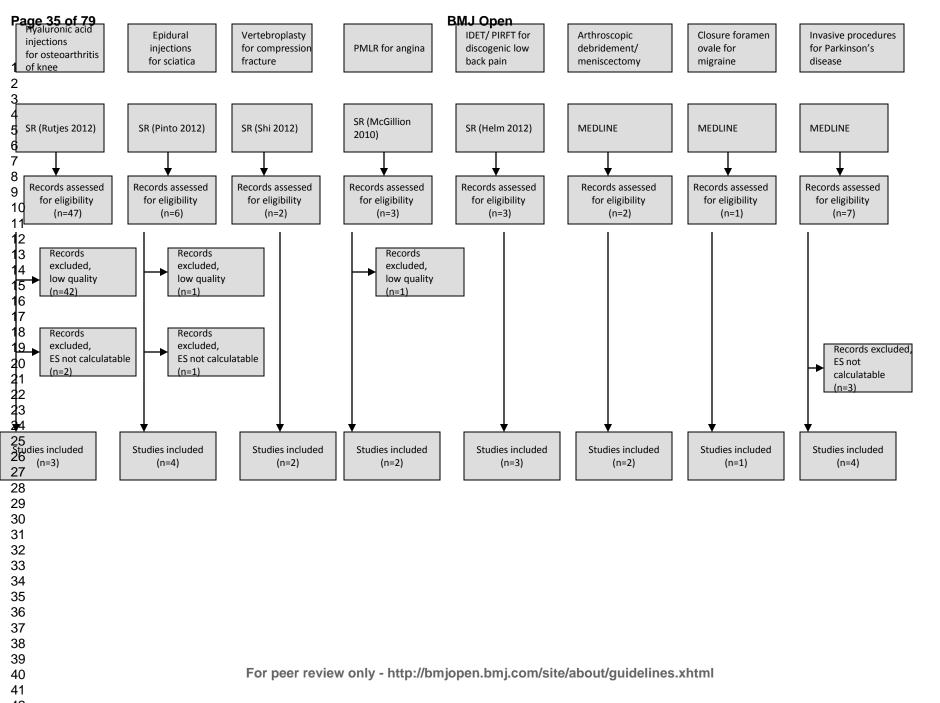

Data sharing: Dataset can be obtained from Robin Holtedahl (robi-hol@online.no).

The lead author affirms that this manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant, registered) have been explained.


This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is noncommercial.


Effect sizes of active treatment and sham, primary endpoints. 250x216mm (300 x 300 DPI)

Differences in effect size between active treatment and sham. 221x173mm (300 x 300 DPI)



Association between effect sizes of primary endpoints in active treatment and sham arms. Linear regression, 95% confidence intervals. N=21. 67x50mm (300 x 300 DPI)

Association between effect sizes of pooled secondary endpoints in active treatment and sham arms. Linear regression, 95% confidence intervals. N=19. 67x50mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open						
Appendix table 1.	Search nhrases	no of eliai	hle studi	es and reasons	s for exclusi	ion
	Search phrases,				Excluded,	
					other	
				Excluded, ES		
D	Search phrase		Eligible		logical	Included
Procedure	MEDLINE Percutaneous	Source	studies	calculatable	reasons	studies
	myocardial laser	McGillion				Salem 2004,
PMLR	revascularization		3	-	1	Leon 2005
	Intradia cal OD					Kvarstein, 2009
	Intradiscal OR annular AND			-	-	2009 Freeman
	thermal AND	Helm				2005, Pauza
PIRFT /IDET	"low back pain"	2012 (18)	3	-	-	2003
	Epidural AND			Karppinen 2001		Iversen 2011, Valat 2002,
Epidural injection	corticosteroid*	Pinto		2001		Arden 2002,
corticosteroids	AND sciatica	2012 (16)	6		1	Cohen 2012
	Hyaluron* OR					Chevalier
Intraarticular hyaluronic acid for	viscosuppl* AND knee AND			Lundsgaard	42	2010, Altman
osteoarthritis knee		Rutjes 2012 (15)	47	2008, Petrella 2008	74	2004, Pham 2004
		_012(10)				Kallmes
						2009,
Vortobroplacty	vertebroplast*	Shi 2012	2			Buchbinder 2009
Vertebroplasty	transplantation	(19)	2	-	-	2009 Marks 2010,
	OR gene OR			Freed 2001,		Olanow 2003,
Invasive treatment of			_	Gordon 2004,		Gross 2011,
Parkinson's disease	Parkinson* debridement	MEDLINE	7	McRae 2004	-	LeWitt 2011
Arthroscopic	AND lavage					
debridement knee	AND knee AND					
osteoarthritis		MEDLINE	1	-	-	Moseley 2002
Meniscectomy knee	meniscectomy AND knee	MEDLINE	1		-	Sihvonen 2013
Foramen ovale	"foramen ovale"		1			2010
closure for migraine		MEDLINE	1	-	-	Dowson 2008
Number of trials			71	6	44	21

Appendix table 2. Indications, postulated mechanisms and history of selected interventions

Invasive procedure / indication	Postulated mechanism	History	References
Percutaneous myocardial laser revascularization / intractable angina pectoris	Increasing the delivery of oxygenated blood to poorly perfused myocardium by creating channels	Introduced in the 1980s, initially transmyocardial route, later percutaneous route, now mostly abandoned	Schofield PM, McNab D. NICE evaluation of transmyocardial laser revascularisation and percutaneous laser revascularisation for refractory angina. <i>Heart</i> 2010;96:312-3.
Patent foramen ovale closure with STARFlex Septal Repair Implant / migraine	Improvement of migraine headache, believed to block the formation of microembolies to the brain	Developed in the 1990s for the prevention of stroke, later thought to cure migraine, never in clinical use for this indication	Gornall J. A very public break-up. <i>BMJ</i> 2010;340:c110
Arthroscopic debridement / Knee osteoarthritis	Unclear, no documented effect on arthritic process, but about 50% report relief of pain (Mosely)	Annually about 650.000 procedures in the USA in the mid-ninetees, but 39% decrease between 2000 and 2008.	Holmes R, Moschetti W, Martin B, Tomek I, Finlayson S. Effect of evidence and changes in reimbursement on the rate of arthroscopy for osteoarthritis. <i>Am J</i> <i>Sports</i> Med 2013:41:1030.43
Arthroscopic meniscectomy / degenerative meniscal lesions	Unclear, relief of symptoms attributed to trimming damaged meniscus down to viable meniscus and removing fragments.	The most common orthopedic procedure in the United States, 700.000 per year, up 50% last 15 years	Med 2013;41:1039-43. Kim S, Bosque J, Meehan JP, Jamali A, Marder R. Increase in outpatient knee arthroscopy in the United States: a comparison of National Surveys of Ambulatory Surgery, 1996 and 2006. <i>J Bone Joint Surg</i> <i>Am</i> 2011;93:994-1000.
Viscosupplementation with hyaluronic acid / Knee osteoarthritis	Improve joint lubrication by increasing HA levels in joint, in spite of short half-lives (Marshall 2000)	Many positive reports since late 1980s, including sham- controlled trials. Still widely in use	Rutjes 2012 (15)
Percutaneous vertebroplasty with PMMA cement injection / vertebral compression fracture	Increase the strength of the damaged bone and alleviate pain by preventing microfractures	Numerous observational studies and single-blind trials reported substantial clinical benefits. Slight reduction of procedure since 2009	Manchikanti L, Pampati V, Hirsch JA. Analysis of utilization patterns of vertebroplasty and kyphoplasty in the Medicare population. J Neurointerv Surg 2013;5:467-72.
Epidural injection of corticosteroids / Sciatica	Dampen inflammatory reaction in nerve root sheaths caused by mechanical compression	Routinely used for sciatica since the 1950s (Pinto 2012). Since 2000 the number of injections increased by about 130% in the United States and 50% in the United Kingdom	Manchikanti L, Falco FJ, Singh V, Pampati V, Parr AT, Benyamin RM, Fellows B, Hirsch JA. Utilization of interventional techniques in managing chronic pain in the Medicare population: analysis of growth patterns from 2000 to 2011. <i>Pain</i> <i>Physician</i> 2012;15:E969- 82

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3

4

5

6

7

8

9

10 11 12

13

14

15

16

17

18

19

20 21

22

23

Percutaneous intradiscal Placement of a electrode or Introduced in 1996 (IDET), Helm 2012 (18) radiofrequency and RF-probe into the annulus later mostly abandoned thermocoagulation and applying heat or current (PIRFT and IDET) / to destruct nociceptors/ discogenic low back annulus pain Fetal nigral transplantation / Parkinson's disease Gene delivery of AAV2-Neurturin / Parkinson's disease Restoration of dopamin Based on animal models and levels in basal ganglia a few small observational through injection of growth trials from about 2000. None Transplantation of factors, GAD gene or nigral drs, jamine neu. in routine clinical use due to human retinal pigmental dopamine neurons insufficient evidence cells / Parkinson's disease Insertion of AAV-GAD gene into subthalamic nucleus / Parkinson's disease

Author	Included secondary endpoints	Excluded secondary endpoints (means not reported, or irrelevant)
Leon 2005		
	Time to onset angina	Improvement in angina class
	Time to onset ST depression	Radioisotope imaging
	Overall health	
	Frequency angina	
	Stability angina	
	Physical functioning	
	Disease perception	
	Treatment satisfaction	
	PCS	
	MCS	
Salem 2004		
		Proportion improved CCS angina class
		Medication usage
		Seattle Angina Questionnaire
		Left EF
		Angina stability
		Angina frequency
		Physical limitation
		Treatment satisfactioin
		Disease perception
Sihvonen 2013	WOMET score	
	Knee pain at rest	
	Knee pain after exercise	
	15D score	
Moseley 2002		
2	Arthritis Impact Scale	-
	Physical functioning Scale	
	Walking-bending	
	SF-36 Pain	
	SF-36 Physical functioning	
Pham 2004		
	Lequesne's algofunctional index	-
	Global assessment	
	% painful days	
Chevalier 2010		
	Womac C function	-
Altman 2004		
	Womac stiffness	
	Womac physical	
Kallmes 2009		
	Pain Intensity	Opioid use

	SF-36 PCS	
	SF-36 MCS	
	Pain Frequency Index	
	Pain Bothersomeness Index	
	EQ-SD Index	
Described and an	SOF-ADL	
Buchbinder 2009		
	Roland-Morris Disability Questionnaire	-
	Life Questionnaire of the European Foundation	
	European Quality of Life–5 Dimensions	
Cohen 2012		
-	Oswestry Disability Index	-
	Back pain	
Arden 2005	P	
	Leg pain	Analgesic use
	Back pain	
Valat 2002		
valat 2002	Deleved Merrie Dischille	
	Roland-Morris Disability Questionnaire	Dallas Pain Questionnaire
	Straight leg raising	
	Schober's test	
versen 2011		
		VAS back and leg pain, European Quality o Life scale
Freeman 2005		
	Modifiede Somatic Perception Questionnaire	SF-36 Mental, Role Physical/ Mental, Socia Function
	Low Back Pain Outcome Score	
	SF-36 Physical Function	
	SF-36 Pain	
	SF-36 General Health	
	SF-36 Vitality	
Pauza 2003		
	VAS Pain	
	SF-36 Physical Function	
	SF-36 Pain	
Kvarstein 2009		
2003	SF-36 Bodily pain	
	SF-36 Physical function	SF-36 Mental, Role Physical/ Mental, Soci
	Oswestry Disability Index	- Function
	SF-36 General health	
	SF-36 Vitality	
Olanow 2003		
	UPDRS motor on	Mean L-dopa dose equivalents
	UPDRS ADL off	
	UPDRS ADL on	

	% Off time day	
	% On time without dyskinesia	
Marks 2010		
	UPDRS OFF 1	Mean L-dona dose equivalents
	UPDRS OFF 1	Mean L-dopa dose equivalents
	UPDRS OF 2 UPDRS ON 1	
	UPDRS ON 2	
	UPDRS ON 2 UPDRS ON 3	
	On without dyskinesia	
	On with dyskinesia	
Gross 2011		
01055 2011	UPDRS ON	Mean L-dopa dose equivalents
	UPDRS ADL	
LeWitt 2011		Time of welling
	UPDRS 1	Timed walking
	UPDRS2	BPRS other than taps
	UPDRS4	Dyskinesia rating scale
	Schwab and England ADL scale	Patient's diary
	BPRS taps 60 s	Clinical global impression
	Hoehan and Yahr stage	
	PDQ-39 total	
	1	
Dowson 2008		
Dowson 2008	Headache Impact Test	-
Dowson 2008	Headache Impact Test	

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #	
TITLE				
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1	
ABSTRACT				
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2	
INTRODUCTION				
Rationale	3	Describe the rationale for the review in the context of what is already known.	4	
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	4	
METHODS	·			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.		
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5	
Information sources				
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	5, Appendix table 1	
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	5, Appendix	
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	5-6	
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	5-6	
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	5	
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	6	
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g. 1 ² for each meta-analysis consistency (e.g. 1 ² for each meta-analysis) is the studies of th	6	

Page 43 of 79

10

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	5
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	
RESULTS	<u> </u>		
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	6, 7, Appendix Flow chart
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	7-13
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	7,9 Appendix table 1
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	10-13
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	10-13
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	7,9
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	14, Fig. 3,4
DISCUSSION			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	14,15-17
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	13-17
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	18
FUNDING			
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	29

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. doi:10.1371/journal.pmed1000097

A Group (2009). Preferred Reporting . Page 2 of 2

Placebo effects in trials evaluating 12 selected minimally invasive interventions: an exploratory systematic review and meta-analysis.

Robin Holtedahl, Jens Ivar Brox, Ole Tjomsland

Fram Rehabilitation Centre, Rykkinveien 100, 1349 Rykkin, Norway Robin Holtedahl Consultant Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Box 4956 Nydalen, 0424 Oslo, Norway Jens Ivar Brox Professor South-Eastern Norway Regional Health Authority, PB 404, 2303 Hamar, Norway Ole Tjomsland Director of Quality and Specialist Areas

, <u>robi-hol@o...</u> Correspondence to: Dr Robin Holtedahl; robi-hol@online, telephone +4790248973

Key words:

Placebo effects Invasive procedures Biomedical ethics Evidence based health care

Word count: 3783

Objectives To analyse the impact of placebo effects on outcome in trials of selected minimally invasive procedures, and to assess reported adverse events in both trial arms.

Design <u>ExploratoryA</u> sSystematic review and meta-analysis.

Data Sources and Study Selection We searched MEDLINE and Cochrane library for to identify systematic reviews of musculoskeletal, neurological and cardiacological conditions published between January 2009 and January 2014 including and randomised clinical trials musculoskeletal, neurological and cardiological conditions comparing selected minimally invasive procedures with placebo (sham) procedures. We selected the most recent systematic review with low risk of bias published in core medical journals. We searched For procedures that were not evaluated in systematic reviews we searched-MEDLINE for additional randomised controlled trials published between January 2000 and January 2014. trials with low risk of bias.

Data synthesis Effect sizes (ES) in the active and placebo arms in the trials' primary and pooled secondary endpoints were calculated. Linear regression was used to analyse the association between endpoints in the active and sham groups. Reported adverse events in both trial arms were registered.

Results We included 221 trials involving 2519472 adult participants. For primary endpoints, there was a large clinical effect (ES ≥ 0.8) after active treatment in 12 trials and after sham procedures in 11 trials. For secondary endpoints, seven and five trials showed a large clinical effect, respectively. Three trials showed a moderate difference in ES between active treatment and sham on primary endpoints (ES ≥ 0.5) but no trials reported a large difference. No trials showed large or moderate differences in ES on pooled secondary endpoints. Regression analysis of endpoints in active treatment and sham arms estimated an R² of 0.798 for primary and 0.84 for secondary endpoints. Adverse events after sham were in most cases minor and of short duration.

Conclusion The generally small differences in effect size between active treatment and sham suggest that non-specific mechanisms, <u>principally_including</u> placebo, are major predictors of the observed effects. <u>Adverse events related to sham procedures were mainly minor and short-lived</u>. Ethical arguments frequently raised against sham controlledsham-controlled trials were generally not substantiated.

SUMMARY

Article focus

- Many minimally invasive procedures have gained increased popularity during the last two decades in spite of limited evidence of their clinical effectiveness.
- •Systematic review and meta-analysis of published randomised double-blind placebo-controlled studies of minimally invasive procedures, with special emphasis on the magnitude of change in the placebo (sham) arms.
- •Assessment of adverse events in the trials' active treatment and placebo arms.

Key messages

- The magnitude of change in the active treatment- and placebo arms varied greatly, but about 80% of the variancetion in effect size of active treatment could be explained predicted by placebo effects, regression to the mean or spontaneous improvement.
- Adverse events related to sham procedures were mainly minor and short-lived, and frequently outweighed by positive placebo effects.

Strengths and limitations

+• Strict selection criteria of trials, with low risk of biasmainly based on high-quality systematic

reviews with low risk of bias.

- +•_Calculation of effect sizes on primary and pooled secondary endpoints both in active treatment and sham arms.
- Heterogenous interventions, outcome measures and timing of assessment.
 ÷Searches limited to MEDLINE and Cochrane library

INTRODUCTION

It is normally assumed that medical practices are based on firm clinical evidence, and that new practices or techniques are not introduced before when superiority, or at least non-inferiority, has, has been demonstrated compared to established treatments. However, medical history reveals numerous examples contradicting this assumption. Forty-two percent of 146 medical practices were found to be reversed in a recent review analysing 10 years of publication in a high-impact medical journal.¹ Large effects of an intervention in initial reports are often spurious findings, while the vast majority may represent substantial overestimations.²

Even though surgical and other invasive techniques generally have reached a high degree of sophistication through the last decades, not all invasive procedures have lived up to expectations. Promising results in initial observational studies have in some cases led to widespread clinical implementation, in spite of lack of documented effectiveness.³ The reluctance to abandon contradicted medical practice is commonly ascribed to both culturally embedded medical practices and different forms of vested interests.⁴⁵ The continuation of unnecessary and potentially harmful interventions leads to major costs for both patients and society.

The randomised placebo-controlled trial is considered the gold standard for evaluating the effects of pharmacological treatments. However, there are relatively few controlled studies in peer-reviewed surgical journals, and even fewer placebo (sham)-controlled studies.⁶⁻⁸ Ethical concerns raised by the potential for harm to participants are usually cited as the main obstacle to sham-controlled studies.⁹ Problems of a practical nature relate to patient blinding, differing technical expertise, the heterogeneity of the interventional techniques and variable outcome specifications, making standardisation difficult to achieve.¹⁰

A meaningful effect in clinical trials may result from a large effect in the active treatment group, a small effect in the placebo group, or a combination. Even though a placebo effect has been documented in a range of clinical conditions, there are few studies assessing the magnitude of the placebo effect in surgical procedures. In the present studystudy, we analysed placebo-controlled trials of selected minimally invasive procedures interventions in musculoskeletal, neurological and cardiacelogical conditions. The aims were threefold: (a) to assess the magnitude of change in outcome from baseline to trial endpoint in both the active treatment and placebo (sham) arms_x; (b) to explore the contribution of non-specific factors, including placebo, to the outcome of active treatment, and (c) to assess the level of reported adverse effects in both trial arms.

5

1

METHODS

Search strategy and selection criteria The main focus was evaluation of minimally invasive procedures that were claimed to have substantial clinical effects in cardiological, neurological and musculoskeletal conditions. We excluded oOpen surgical interventions were excluded.

We first conducted electronic searches for randomised placebo-controlled trials of minimally invasive interventions for cardiacological, neurological and selected musculoskeletal conditions, using MEDLINE and Cochrane library to identify systematic reviews published from between January 2009 to and January 2014-. We defined minimally invasive procedures as interventions involving the introduction of a medical device, substance or other foreign material into the body through a cannula, catheter or arthroscope, thereby minimising damage to biological tissues at the point of entrance. We excluded open surgical and laparoscopic interventions. Where applicable, we used the "core clinical journals" filter in PubMed, which is an index of journals particularly relevant to practicing physicians. From the selected reviews, Wwe selected randomised placebo-controlled randomised placebocontrolled trials published from January 2000 to January 2014 that according to the review fulfilled at least four of the following methodological criteria: random allocation, allocation concealment, blinding of participant, blinding of assessor and intention-to-treat analysis. We chose these criteria both because they were the most commonly used in the selected reviews, and because use of scales for assessing quality or risk of bias is explicitly discouraged in Cochrane reviews²⁹¹¹. Two of the authors (RH and JIB) independently assessed analysed the five methodological criteria in the RCTs included selected from systematic reviews. to ascertain that they complied with the five criteria were fulfilled.

For interventions that were not evaluated in systematic reviews, Wwe next searched MEDLINE and Cochrane library for additional randomised placebo-controlled trials published between January 2000 and January 2014. Two of the reviewers (OT and JIB) independently assessed the five criteria mentioned aboverisk of bias in the additional RCTs that were identified from this search. not selected from systematic reviews, based on the same five

criteria that were used for the selection of trials from systematic reviews.

The searches provided trials of the following interventions: percutaneous laser revascularisation of myocardium for angina pectoris, closure of foramen ovale for migraine, arthroscopic meniscectomy for meniscal tears, debridement and injection of hyaluronic acid for symptomatic osteoarthritis of the knee, epidural injections of corticosteroids for sciatica, percutaneous heating of the intervertebral disc for chronic low back pain, vertebroplasty for vertebral body fractures, and injection or transplantation of biological tissue for Parkinson's disease.

The rationale for the introduction of most of these interventions is that a physiological derangement can be brought back to an original, healthy state by invasive techniques. Promising results in initial pragmatic uncontrolled trials in some cases led to widespread clinical implementation, even though some subsequent larger and methodologically more rigorous trials failed to replicate the initial findings. Another common feature of the included interventions is that their rationale is primarily based on improvements in subjective outcome, including pain and health related quality of life.

The searches provided no sham-controlled trials of percutaneous heating of the cervical intervertebral disc, lumbar facet joint injections, chemonucleolysis, transmyocardial laser revascularization for angina, deep brain stimulation for Parkinson's disease or arthroscopic procedures (other than knee conditions). No studies of radiofrequency denervation or intradiscal steroid injection for low back pain were found that provided SD, which is a requirement for calculation of effect size.

From the most recently published systematic review of each procedure, we selected randomised placebo-controlled trials that according to the review fulfilled at least four of the following criteria: random allocation, allocation concealment, blinding of participant, blinding of assessor and intention totreat analysis. For procedures that were not evaluated in systematic reviews, we searched MEDLINE and Cochrane library for randomised placebo-controlled trials. Two of the reviewers (OT and JIB) independently assessed the risk of bias in the RCTs that were not selected from systematic reviews, based on the same five criteria that were used for the selection of trials from systematic reviews.

Only English language journals were included. We excluded crossover trials, trials that did not report results as means, standard deviation, standard error or confidence intervals in both active and sham-groups, as well as trials with only graphic representation of data. We excluded reviews with declared commercial conflicts of interest in order to avoid the risk of financially motivated selection of trials in these reviews.

60

Commercially funded RCTs were not excluded, because all the included trials had been screened for bias either by the highquality systematic reviews or by two of the authors, using strict methodological criteria. Details of the search strategy are shown in web appendix table 1 and web appendix figure 1. We give aA short description of each procedure's introduction, therapeutic rationale and history_z is given in web appendix table 2. This review is reported in accordance with the PRISMA statement.¹²

Data extraction

We registered all continuous primary endpoints. In trials without continuous primary endpoints, with multiple endpoints or no defined primary endpoint, we selected an outcome related to pain or condition-specific endpoint. The heterogeneity of trials did not allow for use of pain as a primary outcome. We used the RCTs' defined primary outcome to avoid bias introduced by choosing our own endpoint. We also registered secondary endpoints in order to avoid potential bias from selective reporting in the included trials. The included and excluded secondary endpoints are shown in web appendix table 3. Endpoints describing medication, radiographic or physiological variables, social or psychological function, were not included. For the Parkinson-trialsParkinson-trials, only endpoints in the off-medication state were registered. Results from on the last follow-up until 12 months were extracted. The trials' protocol registration, funding source, description of sham intervention, sample size, disease duration, length of follow-up and reported adverse events in both trial arms were registered (**Tables 1** and <u>2)</u>.

Data synthesis

To assess clinically important change, we calculated effect size (ES, Cohen's d), based on the means and standard deviations (SD). We calculated ES both for the active and sham intervention to obtain information about the pre-to-post treatment change in both arms. Without first calculating ES of change in each trial armarm, we would not be able to discern the relative contribution of placebo, which was one of the objectives of the study. ES was calculated by subtracting the average score after treatment from the average score before treatmentand dividing the result by the average of the standard deviations before and after treatmentSubtracting the average score after treatment from the average score before treatment and dividing the result by the average of the standard deviations before and after treatment calculated ES. An ES of 0.8 or more is assumed large, while an ES of 0.5 - 0.8 is considered moderate.¹³ In trials with multiple secondary endpoints we calculated the pooled mean ES, without weighting. Because of small sample sizes in most of the included trials, we calculated an adjusted ES in accordance

7

with a recommended procedure.¹⁴ Unadjusted linear regression analyses were used to explore the association between outcome in the active and sham groups both for primary and pooled secondary endpoints. For this analysis, we used Medcalc Statistical Software version 12.7.4.0¹⁵

RESULTS

Selection of interventions

The searches provided sham-controlled trials of the following interventions: percutaneous laser revascularisation of myocardium for angina pectoris, closure of foramen ovale for migraine, arthroscopic meniscectomy for meniscal tears, debridement and injection of hyaluronic acid for symptomatic osteoarthritis of the knee, epidural injections of corticosteroids for sciatica, percutaneous heating of the intervertebral disc for chronic low back pain (two techniques), vertebroplasty for vertebral body fractures, and injection or transplantation of biologically active material for Parkinson's disease (human retinal pigmental cells, fetal nigral cells and Neurturin-3 techniques). Because of the large number of described interventions for neck- and back pain syndromes, we chose to restrict the analysis to sham-controlled trials of the following interventions:

No studies of radiofrequency denervation or intradiscal steroid injection for low back pain were found that provided SD, which is a requirement for calculation of effect size. The epidural injections of corticosteroids for sciatica (sacralcaudal, interlaminar or and transforaminal routes), percutaneous heating of the intervertebral disc for chronic low back pain (percutaneous intradiscal radiofrequency thermocoagulation or and intradiscal electrothermal therapy) and vertebroplasty for vertebral body fractures. The searches provided no shamcontrolled trials of arthroscopic procedures other than knee conditions.

Study selection

The study selection process is summarised in web appendix figure 1. Web appendix table 1 shows the excluded trials and the reasons for exclusion. The search provided five systematic reviews, all identified through searches in MEDLINE, none were commercially funded.¹⁶⁻²⁰ It identified a total of 7410 clinical trials, tenwelve of them were not identified from the systematic reviews. Forty-three-four trials were excluded for methodological reasons, principally due to risk of bias. Six additional trials were excluded because ES could not be calculated.²¹⁻²⁶ Finally, 221 clinical trials with a total of 257219 participants were included in the present review (table 1). Trial interventions in active treatment and sham arms are also shown.

$\begin{smallmatrix} 3&4&5&6&7&8&9\\ 1&1&1&2&1&1&1&1&1&1&2&2&2&2&2&2&2&2&2&2$	1 2 3
$\begin{array}{c} 8\\ 9\\ 1112\\ 134\\ 15\\ 16\\ 17\\ 8\\ 9\\ 01\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22\\ 2$	7
$\begin{array}{c} 19\\ 20\\ 22\\ 23\\ 25\\ 26\\ 27\\ 28\\ 29\\ 03\\ 12\\ 33\\ 34\\ 56\\ 37\\ 38\\ 90\\ 41\\ 23\\ 44\\ 45\\ 46\\ 78\\ 90\\ 51\\ 53\\ 55\\ 56\\ 58\\ 59\\ \end{array}$	8 9 10 11
$\begin{array}{c} 19\\ 20\\ 22\\ 23\\ 25\\ 26\\ 27\\ 28\\ 29\\ 03\\ 12\\ 33\\ 34\\ 56\\ 37\\ 38\\ 90\\ 41\\ 23\\ 44\\ 45\\ 46\\ 78\\ 90\\ 51\\ 53\\ 55\\ 56\\ 58\\ 59\\ \end{array}$	12 13 14 15
$\begin{array}{c} 20\\ 21\\ 22\\ 3\\ 24\\ 26\\ 27\\ 28\\ 29\\ 03\\ 1\\ 23\\ 34\\ 35\\ 36\\ 37\\ 38\\ 90\\ 41\\ 42\\ 44\\ 45\\ 46\\ 78\\ 9\\ 51\\ 52\\ 54\\ 55\\ 57\\ 58\\ 59\\ \end{array}$	19
 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 	20 21 22 23
 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 	24 25 26 27
 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 	28 29 30 31
 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 	32 33 34 35
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	39
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	41 42 43
49 50 51 52 53 54 55 56 57 58 59	45 46 47
53 54 55 56 57 58 59	49 50 51
57 58 59	53 54 55
	57 58 59

			interventions in the act	ive treatment	
and sham arms, Author	and adverse event Protocol approval / funding (commercial, non- commercial).	s Invasive procedure / indication	Sham intervention	Adverse events related to procedure, active treatment	Adverse events related to procedure, sham
Leon 2005 Salem 2004	Food and Drug Administration / NC Ethics	Percutaneous myocardial laser revascularization / intractable angina pectoris	Laser turned on but no procedure performed	MAE in hospital (high dose): 4.1%	MAE in hospital: 0 edural AE
Sihvonen 2013	committee / NC Review board / NC	Arthroscopic partial meniscectomy / degenerate meniscal tear	Routine arthroscopy, simulation of meniscectomy by manipulation etc.	No MAE mAE: 6.6%	mAE: 2.9%
Moseley 2002	Review Board / NC	Arthroscopic debridement / Knee osteoarthritis	Simulated arthroscopy preparation, intravenous anaesthesia, skin incisions, no instruments entered knee, knee manipulated	No procedura	IAE
Pham 2004	Review Board / NC			No Any mAE:	MAE Any mAE:
Altman 2004	Ethics committee / C	Hyaluronic acid / Knee osteoarthritis	Intraarticular injection of saline solution	81.7% No mAE: 12.8%	1.2% MAE mAE: 8%
Chevalier 2010	ClinicalTrials.org / C			No mAE: 35,8%	MAE mAE: 33,8%
Kallmes 2009	Review Board / NC	Percutaneous vertebroplasty with PMMA cement	Conscious sedation + local anesthaesia, pressure put on spine, simulation of odor with mixing of PMMA to imitate the smell during the active procedure		MAE mAE: 16%
Buchbinder 2009	Ethics committee at each participating centerAustralian Clinical Trial Register / NC	injection / vertebral compression fracture	Conscious sedation + local anesthaesia, needle inserted to rest on the lamina, PMMA container opened to imitate the smell during the active procedure	No proce	edural AE

Cohen 2012	Review Board / NC		2 ml sterile water at 1-2 injection sites,	No I	MAE
			transforaminal approach	mAE:36%	mAE: 20%
Arden 2005	Ethics	-	2 mL saline into	No I	MAE
	committee / NC	Epidural injection of	interspinous ligament	mAE: 9%	mAE: 10%
Valat 2002	Ethics	corticosteroids /	2 mL saline into	No I	MAE
	committee / NC	Sciatica	epidural space, interlaminar approach	mAE: 6%	mAE: 8%
lversen 2011	Ethics committee / NC		Subcutaneous injection of 2 mL saline superficial to the sacral hiatus	2 mL ficial to	
Freeman 2005	Ethics committee / C	0	17-gauge introducer needle inserted into	No I	MAE
			disc under fluoroscopic guidance, catheter inserted but not	mAE: 11%	mAE: 5%
		Intradiscal	connected to		
		electrothermal therapy (IDET) /	generator, both subject and surgeon		
		discogenic low back	blinded.		
Pauza 2003	Review Board / NC	pain	17-gauge needle introduced onto the outer annulus, mock electrode passage shown on monitor, generator noises produced	Not re	ported
Kvarstein 2009	Ethics committee / NC	Percutaneous intradiscal radiofrequency thermocoagulation (PIRFT) / discogenic low back pain	17-gauge canula and RF-probe inserted into annulus, no RF current applied	Not re	ported
Olanow 2003	Review Board /	Fetal nigral	Scalp incisions,	No I	MAE
	NC	transplantation, 4 donors / Parkinson's disease	partial thickness burr holes, no cell transplantation, 6 months low-dose cyclosporine	mAE (rate/patient day: 0,66	mAE (rate/patien day: 0,39
Marks 2010	Review Board /	Gene delivery of	Scalp incisions,	MAE: 4	MAE: 0
	C	AAV2-Neurturin / Parkinson's disease	partial thickness burr holes, no intracranial injections	Most frequent mAE: headache:	Most frequent mAE: headache:
				68%	50%
Gross 2011	Review Board /	Transplantation of	Scalp incisions,	1 death	0 deaths

		Limit disease duration / time to T	Trial arm / no		ES pooled secondary	
Table 2. Effect si	ze (ES) on primary a t and sham arms.		· · ·	ints, showing dif	ferences betwe	en
Twelve o endpoint	butcomes after actives of the 2 <mark>21</mark> trials show the safter active treatrons of the sham pro- safter the sham pro-	wed a large ES o nent, while 11 t	on primary trials showed	a		2
enrolme ^{41 4<u>4</u>-4<u>7</u>8}	reported approval o nt (table 1). Eight tr Aost of the trials ha nedian 80).	ials were comm	nercially funde	ed. ^{32 33}		l
criteria. individua	The two authors wh Il trials, with special It allocation and bli	o independent	ly screened th oncealment o	e f		
fulfilled a ⁴³² , one excluded searches	een trials were seled at least four of the f trial did not fulfil th Seven trials were in MEDLINE <u>fulfille</u> trial fulfilled at leas	ive methodolog e methodologic selected-provid d the same crite	gical criteria. ² cal criteria and <u>ed</u> through eria. ^{29 <u>28 30</u> 44<u>3</u> 43}	7 28 31- - Was ⁸⁷ and		
	IC=non-commerical hylmethacrylate; AA					
Dowson 2008	Ethics committee / C	Patent forame ovale closure v STARFlex Septa Repair Implant migraine	with skin i al groin t /		MAE (possibly or probably related to procedure): 11%	MAE (possibly probably related to procedure 4%
	c	GAD gene into subthalamic nu / Parkinson's disease	ucleus infusi	al to nucleus, on of saline	mAE (probably related to procedure): 56%	mAE (probably related to procedure 14%
.eWitt 2011	C Review Board /	human retinal pigmental cells Parkinson's dis Insertion of AA	s / holes sease trans	al thickness burr , no cell plantation tion of catheter	MAE: 23%	MAE: 0

follow-up

(months)

Author / procedure

of patients

randomised

ES

endpoint

primaryendpoints (no of

endpoints)

	None / 1	Active / 25	0.35 0.15	0.54 0.40	
Petrella 2002 / Hyaluronic acid			Womac pain	(8)	
ES active treatment vs sham			0.34		0.06
		Sham / 129	1.18	1.07	
	None / 6	Active / 124	1.52	1.13	4
Chevalier 2010 / Hyaluronic acid			Womac A	Womac C function	
ES active treatment vs sham		5114111 / 85	1.54 - 0.06		0.05
	None / 12	Active / 131 Sham / 85	1.48	1.35	
Pham 2004 / Hyaluronic acid			VAS Pain	(3)	
ES active treatment vs sham			-0.31		-0.09
		Sham / 60	0.85	0.20	
uebridement	None / 12	Active / 59	Scale	(5)	
Moseley 2002 / Arthroscopic	Nona / 12		Knee Specific Pain		
ES active treatment vs sham		Sham / 76	1.03 - 0.17	0.58	0.00
		Active / 70	0.86	0.58	
Sihvonen 2013 / Arthroscopic partial meniscectomy	>3 / 12		Lysholm knee score	(4)	
ES active treatment vs sham			-0.04		
		Sham / 42	0.08		
	None / 12	Active / 40	(s) 0.04		
Salem 2004 / Percutaneous	Nono / 12		Exercise duration		
ES active treatment vs sham		Sham / 102	0.22	0.54	0.07
		Active / 98	0.23	0.60	
Leon 2005 / Percutaneous myocardial laser revascularization	None / 12		Exercise duration (s)	(10)	

1 2
3 4
4 5 6 7
, 8 9
10 11
12 13
8 9 10 11 12 13 14 15 16 17 18
17 18
19 20 21
22 23
24 25 26
27 28
29 30
31 32 33
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
36 37 38
39 40
41 42 43
44 45
46 47 48
49 50
51 52 53
54 55
56 57
58 59 60

ES active treatment vs sham			0.22		0.1 4
Altman 2004 / Hyaluronic acid	None / 6		Womac pain	(2)	
		Active / 172	0.76	0.38	
		Sham / 174	0.85	0.53	
ES active treatment vs sham			-0.09		-0.1
Kallmes 2009 / Percutaneous vertebroplasty	<12 / 1		Roland-Morris Disability Questionnaire	(7)	
C		Active / 68	0.86	0,72	
		Sham / 63	0.81	0.63	
ES active treatment vs sham			0.05		0.0
Buchbinder 2009 / Percutaneous vertebroplasty	<12/6		Pain Score	(4)	
		Active / 38	0.83	0.46	
		Sham / 40	0.71	0.51	
ES active treatment vs sham			0.12		-0.0
Cohen 2012 / Epidural injection of corticosteroids	<6 /1		NRS leg pain	(2)	
		Active / 28	1.51	0.88	
		Sham / 30	0.82	0.39	
ES active treatment vs sham			0.69		0.4
Iversen 2011 / Epidural injection of corticosteroids	>3 / 12		Oswestry disability index		
		Active / 36	1.68		
		Sham / 40	1.85		
ES active treatment vs sham			-0.17		
Arden 2005 / Epidural injection of corticosteroids	>1<18/12		Oswestry disability index	(2)	
		Active /120	1.42	1.14	
		Sham / 108	1.44	1.21	
ES active treatment vs sham			-0.02		-0.0
Valat 2002 / Epidural injection of corticosteroids	<6 / 1		VAS Pain	(3)	
		Active / 42	1.85	1.10	
		Sham / 43		0.99	

			1.47		
ES active treatment vs sham			0.38		0.10
Freeman 2005 / Intradiscal			Oswestry disability		
electrothermal therapy	≥3 / 6			(6)	
		Activo / 28	0.10	0.02	
		Active / 38	0.10	-0.03	
		Sham / 19	0.07	0.12	
ES active treatment vs sham			0.17	-	0.15
Pauza 2003 / Intradiscal			Oswestry disability		
electrothermal therapy	>6 / 6		index	(3)	
		Active / 32	0.94	0.90	
		Sham / 24	0.35	0.46	
ES active treatment vs sham			0.59		0.44
Kvarstein 2009 / Percutaneous					
intradiscal radiofrequency			Brief Pain	/_\	
thermocoagulation	>6 / 12		Inventory	(5)	
		Active / 10	0.34	0.54	
		Sham / 10	0.23	0.24	
ES active treatment vs sham			0.11		0.30
Olanow 2003 / Fetal nigral					
transplantation	None / 24		UPDRS 3 off	(5)	
		Active / 12	0.04	-0.24	
		///////////////////////////////////////			
		Sham / 11	0.44	-0.19	
ES active treatment vs sham			0.48	-	0.06
Marks 2010 / Gene delivery of AAV2- Neurturin	≥60 / 12		UPDRS 3 off	(7)	
		Active / 38	0.72	0.23	
		Sham / 20	0.53	-0.05	
ES active treatment vs sham			0.19		0.28
Gross 2011 / Transplantation of human retinal pigmental cells	≥60 / 12		UPDRS 3 off	(2)	-
		Active / 35	1.09	0.08	
		Sham / 36	0.88	0.06	
ES active treatment vs sham			0.21		0.02
LeWitt 2011 / AAV-GAD gene into				/\	
subthalamic nucleus	≥60 / 6		UPDRS 3 off	(7)	
		Active / 16		0.30	

1.00 Sham / 21 0.42 0.21 0.58 0.08 ES active treatment vs sham Frequency Dowson 2008 / Patent foramen ovale migraine/month Headache Impact closure None / 6 (per protocol) Test Active / 74 0.74 1.02 Sham / 73 0.45 1.06 ES active treatment vs sham 0.28 0.04

VAS=Visual Analogue Scale; NRS=Numerical Rating Scale; UPDRS=Unified Parkinson's Disease Rating Scale; Womac=Western Ontario and McMaster Universities Osteoarthritis Index

ES on primary endpoints was moderate in <u>four-three</u> of the active treatment groups and in two of the sham groups.

On pooled secondary endpoints, a large ES was estimated in seven trials after active treatment and in five trials after sham, while a moderate ES was reported in <u>five-four</u> and <u>four-three</u> trials respectively (table 2).

In none of the trials did the actively treated group show a deterioration of primary endpoint during treatment, while this was the case for two of the sham groups (not reported to be related to the procedure). On secondary endpoints, deterioration occurred in two active treatment and two sham groups (table 2).

Differences in outcome between active treatment and sham Better results on primary endpoints were reported with active treatment compared to sham in 154 of the 221 trials, but the differences were small. Three trials (one epidural study³⁶⁷, one discogenic pain study⁴⁰¹ and one Parkinson study⁴⁵⁶) reported a moderate effect but none showed a large effect (figure 2, table 2). Seven trials reported a better primary endpoint outcome after sham than after active treatment.

<u>Nineteen trials reported On-</u>secondary endpoints, 121 of<u>these/1920 trials</u> reported better outcome after active treatment than after sham, but in no case did the differences reach a moderate ES (figure 2, table 2). In <u>twelve 132/1920</u> <u>trialstrials</u>, with both primary and secondary endpoints, the outcome was better for primary than for pooled secondary endpoints. This bore no relation to funding source.

On regression analyses<u>analyses</u>, effect sizes in the sham groups explained predicted about 80 % of the variance tion of 15

ES in the active treatment groups, both on primary and pooled secondary endpoints (figure 3 and 4).

Adverse events

EighNineteen of the 221 studies provided information about adverse events (AE) (table 1). Three of these trials reported no procedural adverse events in any of the groups.^{27 29 356} Major AEs were reported after active treatment in four trials^{28 445 456} ⁴²⁸ including one death in one of the Parkinson studies.⁴⁶⁵ In the sham groups, one trial⁴²⁸ listed three major AEs possibly or probably related to the procedure, all thought to be caused by anti-platelet medication, none of them life-threatening. Apart from this trial, there were no major AEs in the sham groups. The reported minor AEs were all of limited duration.

DISCUSSION

Principal findings

AQur analysis of these-21 selected sham-controlled trials of minimally invasive procedures showed that the general lack of clinicaleffect sizes effect in the active in the selected trials arms werewas predicted by the effect sizes mainly due to large effects in the sham arms and not to small effects in the active treatment arms. There was in these 221 selected shamcontrolled trials of invasive procedures, there was a large clinical-ESeffect on primary endpoints in about half of both similar number of the active and sham interventions, but none of the trials showed a large .-The difference in ES-ESeffect between active treatment and sham groups eitherm on primary or secondary endpoints.

<u>T</u>-was moderate in three trials, while none demonstrated a large effect. On pooled secondary endpoints, none of the trials showed even a moderate clinical effect.

Our analysis of effect sizes showed that the general lack of clinical effect in the selected trials was mainly due to large effects in the sham arms and not to small effects in the active treatment arms. However, the magnitude of the effect in each trial arm varied considerably, both between different procedures and between trials using the same procedure. For instance, in the active treatment groups, ES for primary endpoints varied from around zero to almost 2 after active treatment, and from about -0.4 to 1.5 after sham. Disparate outcomes were reported even between trials where technical parameters were similar. For instance, ES in the sham group in the three hyaluronic acid-trials varied by a factor of three, and in the epidural trials by a factor of two. This variability is probably related to differences in study design, duration of disability before inclusion, contextual factors, including the doctor-patient relationship as well as other factors. The close

57

58 59 60 association between endpoints in the active treatment and sham groups on regression analyses suggests that a large part of the reported outcomes in the active treatment groups are due to placebo effects, statistical regression to the mean or the natural course of the condition.

Strengths and limitations of study

It is our opinion that the calculation of effect sizes in both active treatment and placebo arms is a strength of the present study. This made it possible to- assess the magnitude of change in both arms as well as and the contribution of non-specific factors to change in the active treatment arms. The calculation of effect sizes provides an alternative assessment to probability estimates. Another strength of the study is the supplementary analyses of pooled secondary endpoints, enabling a more comprehensive evaluation than using primary endpoints alone. Reports of tactically motivated use of primary and secondary endpoints before publication in order to improve study results strengthen the argument for registering all relevant secondary endpoints.⁴⁸ Our finding that a majority of trials reported better results on primary than on secondary endpoints might lend support to such a hypothesis, although all trials, according to the authors, had sought and gained approval of the protocol from ethics committee and/ or review board (table 1).

The use of ES as a measure of clinical effect assumes a normal distribution of the data. This does not necessarily apply in the included trials because the majority of them are small. Including trials reporting non-parametric data would however necessitate other methods of statistical analysis. Small studies increase the likelihood of type-2 errors, though this is more relevant to probability estimates than analysis of ES.

We applied principles from guidelines for conducting systematic reviews and meta-analyses and included an . The independent assessment of methodological trial quality by two of the authors, authors gives added confidence in the trial selection. WHowever, we cannot rule out that we have missed relevant trials because we limited our search to the Cochrane Library and MEDLINE, but most relevant trials are likely to have been identified by our searches. By preferentially selecting core journals and trials that had previously been methodologically evaluated in systematic reviews, it was our intention to reduce the risk of bias by excluding studies of low guality. We realize that this selection process and the fact that we relied on previous methodological evaluations may have contributed to unrecognised selection bias.

The present It must be emphasised that this-review is exploratory, being-limited to some-selected minimally invasive procedures in cardiology, neurology, and musculoskeletal 17

200

2
3
4
5
6
7
1
8
9
10
44
11
12
13
14
15
10
16
17
18
19
20
20
21
22
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 8 19 20 12 23 24 5 26 7 8 9 30 11 12 13 14 15 16 17 8 19 20 12 23 24 5 26 7 28 29 30 13 23 33 43 5 36 37 38 39 40 1
21
24
25
26
27
28
20
29
30
31
32
22
33
34
35
36
37
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
51
52
52 53
54
55
55 56
56
57
58
59
60

conditions. to certain conditions and interventions, and also excluding interventions for life threatening conditions. We applied principles from guidelines for conducting systematic reviews and meta-analyses. By selecting core journals and trials that had previously been methodologically evaluated in systematic reviews, it was our intention to reduce the risk of bias by excluding studies of low quality. We realize that this selection process and the fact that we relied on previous methodological evaluations may contribute to unrecognised selection bias. The strengths of the present systematic review include the use of strictly defined selection criteria to minimise bias. For five <u>six</u> of the <u>eighttwelvenine</u> procedures we <u>identified</u> selected trials <u>that, according to</u> from the most recent

selected trials that, according to from the most recent systematic reviews published in core clinical journals, fulfilled at least four of the following criteria: random allocation, allocation concealment, blinding of participant, blinding of assessor and intention-to-treat analysis.

For the remaining , all of them by authors without declared commercial interests. From these reviews, we selected trials that complied with a set of predefined methodological criteria. tThreefour proceduressix four procedures, additional trials that were identified by directly through MEDLINE searches and the same criteria were used to assess bias. We cannot rule out that we have missed relevant trials because we limited our search to the Cochrane Library and MEDLINE, but most relevant trials are likely to have been identified by our searches. It must be emphasised that our limitation to certain conditions, as well as the heterogeneous nature of selected interventions, imply that our findings cannot be generalised to minimally invasive procedures in all medical disciplines. We believe, however, that the same methodology could be applied to more systematic analyses of the role of placebo effects in other conditions and procedures.

We applied principles from guidelines for conducting systematic reviews and meta analyses. By selecting core journals and trials that had previously been methodologically evaluated in systematic reviewsreviews, it was our intention to reduce the risk of bias by excluding studies of low quality. We realize that this selection process and the fact that we relied on previous methodological evaluations may contribute to unrecognized selection bias. We also emphasise that our limitation to certain conditions and highly heterogeneous interventions implies that our findings cannot be generalised to minimally invasive procedures in all medical disciplines.

The calculation of effect sizes in both active treatment and placebo arms enabled us to assess the magnitude of change in both groups. This in turn made it possible, through regression analysis, to show that non-specific effects, including placebo, can largely explain the variation in outcomes after the active

58 59 60

1		
2		
3		
4		19
5		17
6		
7	interventions. The calculation of effect sizes provides a better	
	assessment of clinically important effects than using	
8	probability estimates, and supplementary analyses of pooled	
9	secondary endpoints contribute to a more comprehensive	
10	evaluation than using primary endpoints alone. Reports of	
11	tactically motivated manipulation of primary and secondary	
12	endpoints before publication in order to improve study results	
13	are also arguments in favour of registering all relevant	
14	secondary endpoints. ⁴⁹ Our finding that a majority of trials	
15	reported better results on primary than on secondary	
16	endpoints might lend support to such a hypothesis. However,	
17	according to the authors, all trials had sought and gained	
18	approval of the protocol from ethics committee and/ or review	
19	board (table 1).	
20	The described indications and procedures are heterogeneous,	
21	encompassing both neurological, orthopaedic and cardiological	
22	specialties. While some procedures are, or have been, in wide	
23	clinical use, some are still in the clinical trial phase. are still	
24		
25	considered experimental. Other sources of heterogeneity are	
26	variable duration of disease before inclusion, the selection of	
27	outcome measures and time to follow-up. RThough esults our	
28	findings cannot be generalised to minimally invasive	
	procedures in all medical disciplines, but we hypothesise that a	
29	similar methodology could be applied to more systematic	
30	analyses of the role of non-specific effects in other minimally	
31	invasive procedures.	
32	We emphasise that our limitation to certain conditions and	
33	interventions implies that our findings cannot be generalised	
34	to minimally invasive procedures in all medical disciplines.	
35	Other sources of heterogeneity wereare variable duration of	
36	disease before inclusion, time to follow-up and variable and	
37	outcome measures. The contribution of spontaneous	
38	improvement relative to placebo effect might be expected to	
	be greater with longer time to follow-up.	
39		
40	screened for bias using the same methodology.	
41		
42	Moreover, we <u>Our calculation of ed the effect sizes in both</u>	
43	active treatment and placebo arms, enabled ing us to assess	
44	the magnitude of change in both groups. This in turn made it	
45	possible, through regression analysis, to show that non-specific	
46	effects, including placebo, can largely explain the variation in	
47	outcomes after the active interventions. The calculation of	
48	effect sizes provides a better assessment of clinically important	
49	effects than using probability estimates, and supplementary	
	analyses of pooled secondary endpoints contribute to a more	
50	comprehensive evaluation than using primary endpoints alone.	
51	Reports of tactically motivated manipulation of primary and	
52	secondary endpoints before publication in order to improve	
53		
54	study results are also arguments in favour of registering all relevant secondary endpoints. ⁴⁹ -Our finding that a majority of	
	relevant secondary endpoints. Uur finding that a majority of	

trials reported better results on primary than on secondary endpoints might lend support to such a hypothesis. However, according to the authors, all trials had sought and gained approval of the protocol from ethics committee and/ or review board (table 1).

5 6

7

8

9

10

11 12 13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33 34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

The present study has several potential limitations. The described indications and procedures are heterogeneous, encompassing both neurological, orthopaedic and cardiological specialties. While some procedures are, or have been, in wide clinical use, some are still considered experimental. Duration of disease before inclusion, time to follow-up and outcome measures varied considerably, adding to the heterogeneity. The contribution of spontaneous improvement relative to placebo effect might be expected to be greater with longer time to follow-up. We cannot exclude that we have missed may have missed relevant trials because we limited our search to the Cochrane Library and MEDLINE, but most relevant trials are likely to be identified by our searches. or because of publication bias in the MEDLINE searches, though this is less likely for trials selected from the included systematic reviews. The use of ES as a measure of clinical effect assumes a normal distribution of the data. This does not necessarily apply in the included trials because the majority of them are small. Including trials reporting non-parametric data would however necessitate other methods of statistical analysis. Small studies increase the likelihood of type-2 errors, though this is more relevant to probability estimates than analysis of ES.

We applied principles from guidelines for conducting systematic reviews and meta-analyses and included an <u>. The</u> <u>iindependent assessment of methodological trial quality by</u> two of the authors. authors gives added confidence in the trial <u>selection</u>. WHowever, we cannot rule out that we have missed relevant trials because we limited our search to the Cochrane Library and MEDLINE, but most relevant trials are likely to have been identified by our searches. By preferentially selecting core journals and trials that had previously been methodologically evaluated in systematic reviews, it was our intention to reduce the risk of bias by excluding studies of low quality. We realize that this selection process and the fact that we relied on previous methodological evaluations may have contributed to unrecognised selection bias.

The use of ES as a measure of clinical effect assumes a normal distribution of the data. This does not necessarily apply in the included trials because the majority of them are small. Including trials reporting non-parametric data would however necessitate other methods of statistical analysis. Small studies increase the likelihood of type-2 errors, though this is more relevant to probability estimates than analysis of ES.

BMJ Open

Adequate blinding and lack of physiological effects?

We cannot rule out that treatment-specific effects in the actively treated groups may have jeopardised blinding, leading to overestimation of treatment effects through positive expectations. However, all the included trials gave a detailed description of the sham procedure, and both participant and assessor blinding seems to have been adequate.

On a more general level, it has been argued that sham procedures are not inert and may have specific physiological effects, thereby underestimating a treatment effect.⁵⁰⁴⁹ More recently, Bickett et al. hypothesised that epidural injection of small volumes of saline might have physiological effects.⁵⁰⁴ However, it is to be noted that in the four selected epidural trials in the present study, improvements in the sham group were greater in the two trials using non-epidural saline than in those using epidural saline, making a physiological effect less likely. In our opinion, physiological effects of the sham interventions are also unlikely in the remaining procedures.

Surgery and other invasive procedures are commonly believed to be associated with enhanced placebo effects, a phenomenon coined mega-placebo.⁵¹² In spite of their heterogeneous nature, the 221 selected trials share a medicotechnological context in which an a priori enhanced placebo response could be expected. If an ES >0.8 is considered as mega-placebo, nearly half of the included sham interventions reached this level. Factors such as the level of enthusiasm and conviction conveyed by the therapist, the impression of advanced procedures and the extent to which these factors succeed in activating a placebo response are probably crucial in explaining the improvements after sham interventions and the correlation of endpoints in the active treatment and sham groups. Participants' perception of whether they received active treatment or sham has been shown to contribute more to clinical improvement than the biological effects per se.^{26 523}

Non-specific factors

The role of non-specific factors, primarily spontaneous remission or statistical regression-to-the-mean, in placebocontrolled studies is controversial.⁵²⁴ A recent meta-analysis analysing 202 trials with an untreated group, spanning 60 different clinical conditions, found rather small differences between placebo and no treatment, with effect sizes in the range of 0.2 to 0.3. ⁵⁴⁵ Apart from acupuncture trials (mean ES 0.68), the authors did not include trials reporting the effectiveness of invasive procedures. Another meta-analysis studied the placebo effect of a range of treatments (pharmacological, non-pharmacological and surgical) for osteoarthritis of the hand, hip and knee. ⁵⁶⁵ Of 198 included trials fourteen had a no-treatment arm. The mean ES in the

placebo groups was about 0.5, while it was only slightly above zero in the no-treatment groups. The difference between the placebo and no-treatment groups was larger than the difference between the placebo and active treatment groups. Trials using injections, acupuncture and surgery had the largest placebo effects, and the effects were larger for subjective than objective endpoints. The authors concluded that there is a significant placebo effect on pain, stiffness and function in symptomatic osteoarthritis.

Because the trials in the present study did not include a notreatment arm (i.e. waiting list), we cannot rule out that the changes appearing during the trial period also reflect nonspecific factors, i.e. spontaneous improvement or regression to the mean. Such mechanisms would be expected to be most prominent in trials with brief illness duration before inclusion and -with longer time to follow-up, while improvements in chronic, unremitting conditions such as Parkinson's disease would be more likely attributed to placebo. Interestingly, in three of the four included Parkinson trials, there were moderate to large improvements in the sham groups even at one-year follow-up.443-465 Other authors have also found improvements several years after sham surgery, indistinguishable from conventional surgery.^{26 5}⁶⁷ This is in agreement with recent insights into the neurobiological effects of placebo and their relation to underlying psychological mechanisms, principally expectation and conditioning.528

Are ethical objections to sham justified?

The use of sham in controlled surgical trials is a divisive issue, with scepticism, even frank opposition, being voiced by both ethics committees, involved surgeons and anaesthetists, and potential patients.⁵⁸⁹ Ethical arguments include the inherent risks of sham procedures combined with the lack of obvious benefits to the participants. Barriers related primarily to feasibility include problems with patient and assessor blinding, differing technical expertise, the heterogeneity of the interventional techniques and variable outcome specifications, making standardization difficult to achieve. Existing ethical guidelines accept the role of placebo-controlled trials when certain conditions are met.^{69_59}_There must be genuine equipoise, i.e. conflicting or weak evidence of the effectiveness of a procedure. Blinding of both participants and assessors must be assured, and participants must freely consent to suspend knowledge of whether they are receiving sham or conventional treatment. The health risks and consequences of placebo or delayed treatment must be minimal, and outweighed by the societal importance of establishing the clinical utility of the intervention in question. 60 61 62

The selected trials gave a detailed description of adverse events in both active and sham-treated groups (table 1). The

60

safety concerns frequently raised as an argument against the use of sham were generally not supported. Major adverse events related to the sham procedure were reported in only one of the trials^{42e} and they were short-lived and not life threatening. Minor adverse events were more frequent, but also of limited duration. Positive placebo-induced effects generally outweighed adverse events, thus weakening ethical arguments against the use of sham interventions. In our opinion, the ethical-consequences of the continued use of unproven invasive procedures are of a different magnitude. In the light of studies supporting the beneficial effects of sham procedures, at least for pain and Parkinson symptoms, research ethics committees should consider such factors in their risk-benefit assessments of planned sham controlled trials.^{62,63,64}

Behov for mer homogene pas mat

Clinical implications.

The present results are pertinent to the ongoing discussion about wasteful and unproven medical practices, and underscore the necessity for a continual assessment of existing or novel unproven procedures. Minimally invasive techniques have lowered the threshold for interventions, and led to their application to a wider clinical spectrum (indication creep) without an ongoing evaluation of effectiveness or safety.⁴ The last two decades have seen dramatic increases in the use of several of the described procedures, as well as interventions we have not investigated, such as -facet joint injections, radiofrequency neurotomy, acromioplasty, percutaneous coronary intervention and, more recently, robotic surgery.654-⁷⁴⁶⁹ In light of the results in the present study, placebo effects might well explain a large part of the purported effects of such procedures. When clinicians and regulators are faced with claims of large treatment effects for insufficiently tested procedures, their default mode should be watchful scepticism. The standards of the evaluation process before approval and reimbursement of devices and procedures need to be strengthened, and economic or regulatory incentives that perpetuate the use of undocumented or harmful procedures should be abrogated.

CONCLUSION

Sham-controlled trials are unique in their ability to discriminate between true treatment effects and non-specific effects. The results of the present study suggest that placebo and other non-specific effects associated with minimally invasive<u>the selected interventions explain explain</u> a large part of the<u>ir</u> purported benefits of the selected procedures. Further, results indicate that the risks of adverse events in sham-controlled trials are overrated, and .-The risks are could be considered, and in many cases could might be viewed as acceptable, not least in view of the <u>potential for large</u> personal

BMJ Open

<u>harm</u> and societal costs <u>harm</u> costs and <u>associated</u> <u>dubious</u> <u>ethics of with the continued use of unproven minimally</u> <u>invasive</u> interventions.

Figure legends

Figure 1. Effect sizes of active treatment and sham, primary endpoints.

Figure 2. Differences in effect size between active treatment and sham.

Figure 3. Association between effect sizes of primary endpoints in active treatment and sham arms. Linear regression, 95% confidence intervals. N=221.

Figure 4. Association between effect sizes of pooled secondary endpoints in active treatment and sham arms. Linear regression, 95% confidence intervals. N=2019.

References

1. Prasad V, Vandross A, Toomey C et al. A decade of

reversal: an analysis of 146 contradicted medical

practices. Mayo Clin Proc 2013;88:790-8.

2. Tiago V. Pereira TV, Horwitz RI et al. Empirical

Evaluation of Very Large Treatment Effects of Medical Interventions. *JAMA* 2012;**308**:1676-84.

3. Roberts AL, Kewman DG, Mercier L et al. The power of

nonspecific effects in healing: implications for psychosocial and biological treatments. *Clin Psychol Rev* 1993;**13**:375-91.

 Garner S, Littlejohns P. Disinvestment from low value clinical interventions: NICEly done? BMJ 2011;**343**:d4519.

2 3	
3	
4	
5	
5 6	
7	
0	
8	
9	
9 10	
11	
12	
13	
14	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	
25	
26	
20	
27	
28	
29 30	
30	
31	
32	
33	
34	
35	
36	
37	
20	
38	
39	
33 34 35 36 37 38 39 40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
49 50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

 Scott IA, Elshaug AG. Foregoing low-value care: how much evidence is needed to change beliefs? *Intern Med J* 2013;43:107-9.

- Obremskey WT, Pappas N, Attallah-Wasif E et al. Level of evidence in orthopaedic journals. *J Bone Joint Surg Am* 2005;87:2632-8.
- Reeves B. Health-technology assessment in surgery. Lancet 1999;353:Suppl 1:S13-S15;
- Wenner DM, Brody BA, Jarman AF et al. Do surgical trials meet the scientific standards for clinical trials? J Am Coll Surg 2012;215:722-30.
- Ezekiel JE, Miller FG. The Ethics of Placebo-Controlled Trials — A Middle Ground. N Engl J Med 2001;345:915-9.
- 10. Campbell MK, Entwistle VA, Cuthbertson BH et al.
 Developing a placebo-controlled trial in surgery: issues of design, acceptability and feasibility. *Trials* 2011;**12**:50
- 11. Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1.0.

http://handbook.cochrane.org; (11.11.2014)

 Liberati A, Altman DG, Tetzlaff J et al. The PRISMA statement for reporting systematic reviews and metaanalyses of studies that evaluate healthcare interventions: explanation and elaboration. *BMJ* 2009;**339**:b2700.

13. Cohen J. Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Lawrence Erlbaum Associates,

1988.

- 14. Durlak JA. How to Select, Calculate, and Interpret Effect Sizes. *J Pediatr Psychol* 2009; **34**: 917-28.
- 15. MedCalc Software bvba, Ostend, Belgium; http://www.medcalc.org; (08.03.2014).
- Rutjes AWS, Jünl P, da Costa BR et al.
 Viscosupplementation for Osteoarthritis of the Knee. A Systematic Review and Meta-analysis. *Ann Intern Med* 2012;**157**:180-91.
- 17. Pinto RZ, Maher CG, Ferreira ML et al. Epidural corticosteroid injections in the management of sciatica: a systematic review and meta-analysis. *Ann Intern Med* 2012;**157**:865-77.
- McGillion M, Cook A, Victor JC et al. Effectiveness of percutaneous laser revascularization therapy for refractory angina. *Vasc Health Risk Manag* 2010;6:735-47.
- 19. Helm S II, Deer TR, Manchikanti L et al. Effectiveness of thermal annular procedures in treating discogenic low back pain. *Pain Physician* 2012; **15**:E279-E304.
- 20. Shi MM, Cai XZ, Lin T et al. Is there really no benefit of_vertebroplasty_for osteoporotic vertebral fractures?
 A meta-analysis. *Clin Orthop Relat Res* 2012;**470**:2785-99.

BMJ Open

1 2	
3 4	
5 6	
7	21. Petrella RJ, Cogliano A, Decaria J. Combining
8 9	two hyaluronic acids in osteoarthritis of the knee: a
10 11	randomized, double-blind, placebo-controlled trial.
12 13	Clin Rheumatol 2008; 27 :975-81.
14	22. Lundsgaard_C, Dufour N, Fallentin E et al. Intra-articular
15 16	sodium hyaluronate 2 mL versus physiological saline 20
17 18	mL versus physiological saline 2 mL for painful knee
19 20	osteoarthritis: a randomized clinical trial. Scand J
21 22	Rheumatol 2008 ; 37 :142-50.
23 24	23. Karppinen J, Malmivaara A, Kurunlahti M et al.
25	Periradicular infiltration for sciatica: a randomized
26 27	controlled trial. <i>Spine</i> 2001; 26 :1059-67.
28 29	24. Freed CR, Greene PE, Breeze RE et al. Transplantation
30 31	
32 33	of embryonic dopamine neurons for severe Parkinson's
34	disease. <i>N Engl J Med</i> 2001; 344 :710-9.
35 36	25. Gordon PH, Yu Q, Qualls C et al. Reaction time and
37 38	movement time after embryonic cell implantation in
39	Parkinson disease. Arch Neurol 2004;61:858-61.
40 41	26. McRae C, Cherin E, Yamazaki TG et al. Effects of
42 43	perceived treatment on quality of life and medical
44 45	outcomes in a double-blind placebo surgery trial. Arch
46 47	Gen Psychiatry 2004; 61 : 412-20.
48	27. Salem M, Rotevatn S, Stavnes S et al. Usefulness and
49 50	safety of percutaneous myocardial laser
51 52	revascularization for refractory angina pectoris. Am J
53 54	<i>Cardiol</i> 2004; 93 :1086-91.
55 56	
57	
58 59	
60	

1

- 28. Leon MB, Kornowski R, Downey WE et al. A blinded, randomized, placebo-controlled trial of percutaneous laser myocardial revascularization to improve angina symptoms in patients with severe coronary disease. J Am Coll Cardiol 2005;46:1812-9.
- 29. Moseley JB, O'Malley K, Petersen NJ et al. A controlled trial of arthroscopic surgery for osteoarthritis of the knee. *N Engl J Med* 2002;**347**:81-8.
- 30. Sihvonen R, Paavola M, Malmivaara A et al. Arthroscopic partial meniscectomy versus sham surgery for a degenerative meniscal tear. *N Engl J Med* 2013;**369**:2515-24.
- 31. Pham T, Le Henanff A, Ravaud P et al. Evaluation of the symptomatic and structural efficacy of a new_hyaluronic_acid compound, NRD101, in comparison with diacerein and placebo in a 1 year randomised controlled study in symptomatic knee osteoarthritis. *Ann Rheum Dis* 2004;**63**:1611-7.
- 32. Altman RD, Akermark C, Beaulieu AD et al. Efficacy and safety of a single intra-articular injection of non-animal stabilized_hyaluronic_acid (NASHA) in patients with osteoarthritis of the knee. *Osteoarthritis Cartilage* 2004;**12**:642-9.
- 33. Chevalier_X, Jerosch J, Goupille P et al. Single, intraarticular treatment with 6 ml hylan G-F 20 in patients with symptomatic primary osteoarthritis of the knee: a

BMJ Open

1	
2	
3	
4	29
5	27
6	
	randomised, multicentre, double-blind, placebo
7	
8	controlled trial. Ann Rheum Dis 2010;69:113-9.
9	
10	34.Petrella RJ, DiSilvestro MD, Hildebrand C. Effects
11	5 Trettelia lo, Disilvestro WD, Hildebraha C. Effects
12	for the second
13	of hyaluronate sodium on pain and physical
14	functioning in osteoarthritis of the knee: a
15	
16	randomized, double-blind, placebo-controlled clinical
17	
18	trial. Arch Intern Med 2002;162:292-8.
19	
20	35.34. Kallmes DF, Comstock BA, Heagerty PJ et
21	
22	al. A randomized trial of vertebroplasty for
23	osteoporotic spinal fractures. N Engl J Med
24	
25	2009; 361 :569-79.
26	2003,301.303-73.
27	36-35. Buchbinder R, Osborne RH, Ebeling PR et
28	36.35. Buchbinder R, Osborne RH, Ebeling PR et
29	
30	al. A randomized trial of vertebroplasty for painful
31	osteoporotic vertebral fractures. N Engl J Med
32	
33	2009; 361 :557-68.
34	
35	37.36. Iversen T, Solberg TK, Romner B et al.
36	
37	Effect of caudal epidural steroid or saline injection in
38	
	chronic lumbar radiculopathy: multicentre, blinded,
39	
40	randomised controlled trial. BMJ 2011; 343 :d5278.
41	
42	28.27 Cohon SD, White BL, Kurihara C et al
43	38.37. Cohen SP, White RL, Kurihara C et al.
44	randomised controlled trial. <i>BMJ</i> 2011; 343 :d5278. 38:37. Cohen SP, White RL, Kurihara C et al. Epidural steroids, etanercept, or saline in subacute
45	Epidural steroids, etanercept, or saline in subacute
46	
	sciatica: a multicenter, randomized trial. Ann Intern
47	
48	Med 2012; 156 :551-9.
49	
50	39.38. Arden NK, Price C, Reading I et al. A
51	
52	multicentre randomized controlled trial
53	
54	
55	
56	
57	1
58	
59	
60	

of_epidural_corticosteroid injections for sciatica: the WEST study. *Rheumatology* 2005;**44**:1399-406. 40,<u>39.</u> Valat JP, Giraudeau B, Rozenberg S et al.Epidural corticosteroid injections for sciatica: a randomised, double blind, controlled clinical trial. *Ann Rheum Dis* 2003;**62**:639-43.

41.<u>40.</u> Pauza KJ, Howell S, Dreyfuss P et al. A randomized, placebo-controlled trial of intradiscal electrothermal therapy for the treatment of discogenic low back pain. *Spine* J 2004;**4**:27-35.

42.<u>41.</u> Freeman BJ, Fraser RD, Cain CM et al. A randomized, double-blind, controlled trial: intradiscal electrothermal therapy versus placebo for the treatment of chronic discogenic low back pain. *Spine* 2005;**30**:2369-77.

43.42. Kvarstein G, Måwe L, Indahl A et al. A randomized double-blind controlled trial of intraannular radiofrequency thermal disc therapy--a 12month follow-up. *Pain* 2009;**145**:279-86.

44.<u>43.</u>Olanow CW, Goetz CG, Kordower JH et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson's disease. *Ann Neurol* 2003;**54**:403-14.

45.44. Marks WJ Jr, Bartus RT, Siffert J et al. Gene delivery of AAV2-neurturin for Parkinson's disease: a

BMJ Open

2	
3 4 5	
4	
5	
6	
7	
0	
0	
9	
10	
11	
40	
12	
13	
14	
15	
10	
10	
17	
18	
19	
00	
20	
21	
22	
6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 20	
20	
24	
25	
26	
27	
21	
.78	
29	
30	
21	
31	
32	
33	
34	
34 35	
30	
36 37 38	
37	
38	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

double-blind, randomised, controlled trial. *Lancet Neurol* 2010;**9**:1164-72. 46:45. Gross RE, Watts RL, Hauser RA et al. Intrastriatal transplantation of microcarrier-bound human retinal pigment epithelial cells versus sham

surgery in patients with advanced Parkinson's disease: a double-blind, randomised, controlled trial. *Lancet Neurol* 2011;**10**:509-19.

- 47.<u>46.</u> LeWitt PA, Rezai AR, Leehey MA et al. AAV2-GAD gene therapy for advanced Parkinson's disease: a double-blind, sham-surgery controlled, randomised trial. *Lancet Neurol* 2011;**10**:309-19.
- 48.47. _____Dowson A, Mullen MJ, Peatfield R et al. Migraine Intervention With STARFlex Technology (MIST) trial: a prospective, multicenter, double-blind, sham-controlled trial to evaluate the effectiveness of patent foramen ovale closure with STARFlex septal repair implant to resolve refractory migraine headache. *Circulation* 2008;**117**:1397-404.
- 49.<u>48.</u> Hannink G, Gooszen HG, Rovers MM. Comparison of registered and published primary outcomes in randomized clinical trials of surgical interventions. *Ann Surg* 2013;**257**:818-23.
- 50.49. Birch S. A review and analysis of placebo treatments, placebo effects, and placebo controls in

31

1
2
3
4
5
6
7
8
q
10
10
10
12
13
14
15
16
1/
18
19
20
21
- 2 3 4 5 6 7 8 9 10 1 12 13 14 5 6 7 8 9 10 1 12 13 14 5 6 7 8 9 10 1 12 3 4 5 6 7 8 9 10 1 2 2 3 2 4 5 6 7 8 9 3 1 2 3 3 4 5 6 7 8 9 3 1 3 2 3 3 4 5 6 7 8 9 3 1 3 2 3 3 4 5 6 7 8 9 3 1 3 2 3 3 4 5 6 7 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10
23
24
25
26
27
28
29
30
31
32
33
24
25
30
30
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51 52 53 54
52
53
54
55
56
56 57
57 58
59
60

trials of medical procedures when sham is not inert. *J Altern Complement Med* 2006;**12**:303-10. **51.**<u>50</u>Bicket MC, Gupta A, Brown CH 4th et al. Epidural_injections for spinal pain: a systematic review and meta-analysis evaluating the "control" injections in randomized controlled trials. *Anesthesiology*. 2013;**119**:907-31. **52.**<u>51</u>Kaptchuk TJ, Goldman P, Stone DA et al. Do

medical devices have enhanced placebo effects? *J Clin Epidemiol* 2000;**53**:786-92.

53.52. Einvik G, Tjomsland O, Kvernebo K et al. Preoperative expectations and clinical outcome of transmyocardial laser treatment in patients with angina pectoris. *Tidsskr Nor*

Laegeforen 2002;**122**:2102-4.

- 54.53. Turner JA, Deyo RA, Loeser JD et al. The importance of placebo effects in pain treatment and research. JAMA 1994;**271**:1609-14.
- 55.54. Hróbjartsson A, Gøtzsche PC. Placebo interventions for all clinical conditions. *Cochrane Database Syst Rev* 2010; CD003974.
- 56.55. Zhang W, Robertson J, Jones AC et al. The placebo effect and its determinants in osteoarthritis: meta-analysis of randomised controlled trials. *Ann Rheum Dis* 2008;**67**:1716-23.

BMJ Open

2	
3	
4	33
5	
6 7	57.56. Marchand S, Kupers RC, Bushnell MC et al.
8 9	Analgesic and placebo effects of thalamic stimulation.
10 11	Pain 2003; 105 :481-8.
12 13	58.57. Finniss DG, Kaptchuk TJ, Miller F et al.
14 15	Biological, clinical, and ethical advances of placebo
16 17	effects. <i>Lancet</i> 2010; 375 :686-95.
18 19	59. <u>58.</u> Campbell MK, Entwistle VA, Cuthbertson
20	BH et al. Developing a placebo-controlled trial in
21 22	surgery: issues of design, acceptability and feasibility.
23 24	<i>Trials</i> 2011; 12 :50. doi: 10.1186/1745-6215-12-50.
25 26	60.59. Snyder L. Review of the American College
27 28	of Physicians Ethics Manual, Sixth Edition. Ann Intern
29 30	Med 2012; 156 (1_Part_2):73-104.
31 32	61.60. Flum DR. Interpreting surgical trials with
33 34	subjective outcomes: avoiding UnSPORTsmanlike
35 36	conduct. <i>JAMA</i> 2006; 296 :2483-5.
37 38	62.61. Heckerling PS. Placebo surgery research: a
39 40	blinding imperative. J Clin Epidemiol 2006;59:876-80.
40 41 42	63.62. Brim RL, Miller FG. The potential benefit of
43	the placebo effect in sham-controlled trials:
44 45	implications for risk-benefit assessments and informed
46 47	consent. J Med Ethics 2013; 39 :703-7.
48 49	64.63. Redberg RF. Sham controls in medical
50 51	device trials. <u>N Engl J Med</u> 2014; 371 :892-3.
52 53	65.<u>64.</u> Haahr JP, Østergaard S, Dalsgaard J et al.
54 55	Exercises versus arthroscopic decompression in
56	
57	1
58	
59	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2
2
3 4 5 6 7
5
6 7
8
9
10
11
12
14
15
8 9 10 11 12 13 14 15 16 17 18 19 20 21
18
19
20
21
22 23
24
25
26
27 28
29
30
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
32 33
34
35
36
37 38
39
40
41 42
42 43
44
45
46 47
47 48
49
50
51 52
52 53
53 54
55
56
57 58
50 59
60

1

patients with subacromial impingement: a randomised, controlled study in 90 cases with a one year follow up. *Ann Rheum Dis* 2005;**64**:760-4. 66:65. Ketola S, Lehtinen J, Rousi T et al. No evidence of long-term benefits of arthroscopicacromioplasty in the treatment of shoulder impingement syndrome: Five-year results of a randomised controlled trial. *Bone Joint Res* 2013;**2**:132-9. 67:66. Herrlin S, Hållander M, Wange P et al.

Arthroscopic or conservative treatment of degenerative medial meniscal tears: a prospective randomised trial. *Knee Surg Sports Traumatol Arthrosc* 2007;**15**:393-401.

68.67. Yu E, Cil A, Harmsen WS et al. Arthroscopy and the dramatic increase in frequency of anterior acromioplasty from 1980 to 2005: an epidemiologic study. Arthroscopy 2010;26,Supplement:S142-7.

69.68. Vitale MA, Arons RR, Hurwitz S et al. The rising incidence of acromioplasty. *J Bone Joint Surg Am* 2010;**92**:1842-50.

70.69. Brox JI, Staff PH, Ljunggren AE et al.
 Arthroscopic surgery compared with supervised
 exercises in patients with rotator cuff disease (stage II impingement syndrome). *BMJ* 1993;**307**:899-903.

Contributors: RH initiated and planned the project and searched databases. JIB and OT assisted in developing search strategies. Article screening and data extraction was carried out by RH. Quality of data extraction and checking was carried out by JIB and OT. Statistical analysis was undertaken by RH, who also wrote the draft. OT and JIB reviewed the draft and contributed to manuscript revisions. RH is the guarantor for this study.

Funding sources: None.

All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf and declare: no support from any organisation for the submitted work; no financial relationships with any organisations that might have an interest in the submitted work in the previous three years; no other relationships or activities that could appear to have influenced the submitted work.

Ethical approval: Ethical approval was not required for this work.

Data sharing: Dataset can be obtained from Robin Holtedahl (robi-hol@online.no).

The lead author affirms that this manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant, registered) have been explained.

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is noncommercial.

BMJ Open

Placebo effects in trials evaluating 12 selected minimally invasive interventions: a systematic review and metaanalysis.

Journal:	BMJ Open
Manuscript ID:	bmjopen-2014-007331.R1
Article Type:	Research
Date Submitted by the Author:	18-Dec-2014
Complete List of Authors:	HOLTEDAHL, ROBIN; Fram Rehabilition Centre, Tjomsland, Ole; South-Eastern Norway Regional Health Authority, Division of Quality and Specialist Areas Brox, Jens; Oslo University Hospital, Orthopaedic
Primary Subject Heading :	Evidence based practice
Secondary Subject Heading:	Evidence based practice, Ethics, Research methods, Health services research
Keywords:	Quality in health care < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Health economics < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Clinical trials < THERAPEUTICS, MEDICAL ETHICS, PAIN MANAGEMENT

SCHOLARONE[™] Manuscripts

Placebo effects in trials evaluating 12 selected minimally invasive interventions: a systematic review and metaanalysis.

Robin Holtedahl, Jens Ivar Brox, Ole Tjomsland

Fram Rehabilitation Centre, Rykkinveien 100, 1349 Rykkin, Norway Robin Holtedahl Consultant Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Box 4956 Nydalen, 0424 Oslo, Norway Jens Ivar Brox Professor South-Eastern Norway Regional Health Authority, PB 404, 2303 Hamar, Norway Ole Tjomsland Director of Quality and Specialist Areas

Correspondence to: Dr Robin Holtedahl; robi-hol@online, telephone +4790248973

Key words:

Ney WUIUS: Placebo effects Invasive procedures Biomedical ethics Evidence based health care Word count: 5801

Objectives To analyse the impact of placebo effects on outcome in trials of selected minimally invasive procedures, and to assess reported adverse events in both trial arms.

Design A systematic review and meta-analysis.

Data Sources and Study Selection We searched MEDLINE and Cochrane library to identify systematic reviews of musculoskeletal, neurological and cardiac conditions published between January 2009 and January 2014 comparing selected minimally invasive with placebo (sham) procedures. We searched MEDLINE for additional randomised controlled trials published between January 2000 and January 2014.

Data synthesis Effect sizes (ES) in the active and placebo arms in the trials' primary and pooled secondary endpoints were calculated. Linear regression was used to analyse the association between endpoints in the active and sham groups. Reported adverse events in both trial arms were registered.

Results We included 21 trials involving 2519 adult participants. For primary endpoints, there was a large clinical effect (ES ≥ 0.8) after active treatment in 12 trials and after sham procedures in 11 trials. For secondary endpoints, seven and five trials showed a large clinical effect, respectively. Three trials showed a moderate difference in ES between active treatment and sham on primary endpoints (ES ≥ 0.5) but no trials reported a large difference. No trials showed large or moderate differences in ES on pooled secondary endpoints. Regression analysis of endpoints in active treatment and sham arms estimated an R² of 0.78 for primary and 0.84 for secondary endpoints. Adverse events after sham were in most cases minor and of short duration.

Conclusion The generally small differences in effect size between active treatment and sham suggest that non-specific mechanisms, including placebo, are major predictors of the observed effects. Adverse events related to sham procedures were mainly minor and short-lived. Ethical arguments frequently raised against sham-controlled trials were generally not substantiated.

SUMMARY

Key messages

- The magnitude of change in the active treatment and placebo arms varied greatly, but about 80% of the variance in effect size of active treatment could be predicted by placebo effects, regression to the mean or spontaneous improvement.
- Adverse events related to sham procedures were mainly minor and short-lived, and frequently outweighed by positive placebo effects.

Strengths and limitations

- Selection of trials with low risk of bias
- Calculation of effect sizes on primary and pooled secondary endpoints in both active treatment and sham arms.
- Heterogeneous interventions, outcome measures and timing of assessment.

4

1

INTRODUCTION

It is normally assumed that medical practices are based on firm clinical evidence, and that new practices or techniques are introduced when superiority, or at least non-inferiority, has been demonstrated compared to established treatments. However, medical history reveals numerous examples contradicting this assumption. Forty-two percent of 146 medical practices were found to be reversed in a recent review analysing 10 years of publication in a high-impact medical journal.¹ Large effects of an intervention in initial reports are often spurious findings, while the vast majority may represent substantial overestimations.²

Even though surgical and other invasive techniques generally have reached a high degree of sophistication through the last decades, not all invasive procedures have lived up to expectations. Promising results in initial observational studies have in some cases led to widespread clinical implementation. in spite of lack of documented effectiveness.³ The reluctance to abandon contradicted medical practice is commonly ascribed to both culturally embedded medical practices and different forms of vested interests.⁴⁵ The continuation of unnecessary and potentially harmful interventions leads to major costs for both patients and society.

The randomised placebo-controlled trial is considered the gold standard for evaluating the effects of pharmacological treatments. However, there are relatively few controlled studies in peer-reviewed surgical journals, and even fewer placebo (sham)-controlled studies.⁶⁻⁸ Ethical concerns raised by the potential for harm to participants are usually cited as the main obstacle to sham-controlled studies.⁹ Problems of a practical nature relate to patient blinding, differing technical expertise, the heterogeneity of the interventional techniques and variable outcome specifications, making standardisation difficult to achieve.¹⁰

A meaningful effect in clinical trials may result from a large effect in the active treatment group, a small effect in the placebo group, or a combination. Even though a placebo effect has been documented in a range of clinical conditions, there are few studies assessing the magnitude of the placebo effect in surgical procedures. In the present study, we analysed placebo-controlled trials of minimally invasive interventions in musculoskeletal, neurological and cardiac conditions. The aims were threefold: (a) to assess the magnitude of change in outcome from baseline to trial endpoint in both the active treatment and placebo (sham) arms, (b) to explore the contribution of non-specific factors, including placebo, to the outcome of active treatment, and (c) to assess the level of reported adverse effects in both trial arms.

METHODS

Search strategy and selection criteria

We conducted electronic searches for randomised placebocontrolled trials of minimally invasive interventions for cardiac, neurological and musculoskeletal conditions. We defined minimally invasive procedures as interventions involving the introduction of a medical device, substance or other foreign material into the body through a cannula, catheter or arthroscope, thereby minimising damage to biological tissues at the point of entrance. We first used MEDLINE and Cochrane library to identify systematic reviews published between January 2009 and January 2014. The following key words were used in our search strategies: "randomi* controlled trial", "placebo OR sham" in combination with "low back pain", "neck OR cervical pain", "radiofrequency denervation", "facet joint AND "nerve block" OR injection", "intradiscal OR annular AND thermal", "epidural AND corticosteroid* AND sciatica OR radic*", "hyaluron* OR viscosuppl* AND knee AND osteoarthritis", "vertebroplast*", "arthroscop*", "debridement AND lavage AND knee AND osteoarthr*", "meniscectomy AND knee", "myocardial laser revascularization", "transplantation OR gene OR stem cell OR deep brain stimulation AND Parkinson* OR dystonia", "spinal cord stimulation", and "foramen ovale AND migraine". We used the "core clinical journals" filter in PubMed, which is an index of journals particularly relevant to practicing physicians.

From the most recently published systematic review of each procedure, we selected randomised placebo-controlled trials published later than January 2000. We excluded trials published before January 2000 because our primary aim was to assess interventions that are currently, or until recently have been, in common use. We selected trials that according to the review fulfilled at least four of the following methodological criteria: random allocation, allocation concealment, blinding of participant, blinding of assessor and intention-to-treat analysis. We chose these criteria both because they were the most commonly used in the selected reviews, and because use of scales for assessing quality or risk of bias is explicitly discouraged in Cochrane reviews¹¹. Two of the authors (RH and JIB) independently assessed the five methodological criteria in the RCTs included from systematic reviews.

We next searched MEDLINE for additional randomised placebo-controlled trials published between January 2000 and January 2014. Two of the reviewers (OT and JIB) independently assessed the five criteria mentioned above in the additional RCTs that were identified from this search.

Only English language journals were included. We excluded crossover trials, trials that did not report results as means, standard deviation, standard error or confidence intervals in both active and sham-groups, as well as trials with only graphic representation of data. This review is reported in accordance with the PRISMA statement.¹²

Data extraction

We registered all continuous primary endpoints. In trials without continuous primary endpoints, with multiple endpoints or no defined primary endpoint, we selected an outcome related to pain or condition-specific endpoint. The heterogeneity of trials did not allow for use of pain as a primary outcome. We used the RCTs' defined primary outcome to avoid bias introduced by choosing our own endpoint. We also registered secondary endpoints in order to avoid potential bias from selective reporting in the included trials. Endpoints describing medication, radiographic or physiological variables, social or psychological function, were not included. For the Parkinson-trials, only endpoints in the off-medication state were registered. Results from the last follow-up until 12 months were extracted. The trials' protocol registration, funding source, description of sham intervention, sample size, disease duration, length of follow-up and reported adverse events in both trial arms were registered.

Data synthesis

To assess clinically important change, we calculated effect size (ES, Cohen's d), based on the means and standard deviations (SD). We calculated ES both for the active and sham intervention to obtain information about the pre-to-post treatment change in both arms. Without first calculating ES of change in each trial arm, we would not be able to discern the relative contribution of placebo, which was one of the objectives of the study. Subtracting the average score after treatment from the average score before treatment and dividing the result by the average of the standard deviations before and after treatment calculated ES. An ES of 0.8 or more is assumed large, while an ES of 0.5 - 0.8 is considered moderate.¹³ In trials with multiple secondary endpoints we calculated the pooled mean ES, without weighting. Because of small sample sizes in most of the included trials, we calculated an adjusted ES in accordance with a recommended procedure.¹⁴ Unadjusted linear regression analyses were used to explore the association between outcome in the active and sham groups both for primary and pooled secondary endpoints. For this analysis, we used Medcalc Statistical Software version 12.7.4.0¹⁵

RESULTS

Selection of interventions and trials

$\begin{array}{c} 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40 \end{array}$
26 27 28 29 30 31 32 33 34 35 36 37 38 39

The searches provided sham-controlled trials of the following interventions: percutaneous laser revascularisation of myocardium for angina pectoris (n=2), closure of foramen ovale for migraine (n=1), arthroscopic meniscectomy for meniscal tears (n=1), debridement (n=1) and injection of hyaluronic acid (n=3) for symptomatic osteoarthritis of the knee, injection or transplantation of biologically active material for Parkinson's disease (human retinal pigmental cells (n=1), fetal nigral cells (n=1) and Neurturin (n=2)), epidural injections of corticosteroids for sciatica (caudal (n=1), interlaminar (n=2) and transforaminal (n=1)) routes, percutaneous heating of the intervertebral disc for chronic low back pain (intradiscal radiofrequency thermocoagulation (n=1), intradiscal electrothermal therapy (n=2)) and vertebroplasty for vertebral body fractures (n=2). We give a short description of each procedure's introduction, therapeutic rationale and history in web appendix table 1.

The searches provided no sham-controlled trials of cervical, thoracic or lumbar facet joint nerve blocks or joint injections, spinal cord stimulation for low back pain, cervical epidural injections, transmyocardial laser revascularisation for angina pectoris, deep brain stimulation for Parkinson's disease or dystonia or arthroscopic procedures other than knee conditions. We found six placebo-controlled trials of radiofrequency denervation for low back pain, but all were excluded: SD not provided (n=1),¹⁶ compound primary endpoint (n=1),¹⁷ risk of false positive response because of only one diagnostic block (n=4).¹⁸⁻²¹

The study selection process is summarised in figure 1. The search provided five systematic reviews, all identified through searches in MEDLINE, none were commercially funded.²²⁻²⁶ It identified a total of 71 clinical trials, twelve of them were not identified from the systematic reviews. Forty-four trials were excluded for methodological reasons, principally risk of bias. Six additional trials were excluded because ES could not be calculated.²⁷⁻³² Web appendix table 2 shows the excluded trials and the reasons for exclusion. Finally, 21 clinical trials with a total of 2519 participants were included in the present review (table 1). Trial interventions in active treatment and sham arms are also shown.

and sham ar	rms, and adverse eve	nts			
Author	Protocol approval / funding (commercial, non- commercial).	Invasive procedure / indication	Sham intervention	Adverse events related to procedure, active treatment	Adverse events related to procedure sham

Leon 2005	Food and Drug Administration / NC	Percutaneous myocardial laser revascularization /	Laser turned on but no procedure	MAE in hospital (high dose): 4.1%	MAE in hospital: 0
Salem 2004	Ethics committee / NC	intractable angina pectoris	performed	No procedural AE	
Sihvonen 2013	Review board /	Arthroscopic partial	Routine arthroscopy,	No MAE	
	NC	meniscectomy / degenerate meniscal tear	simulation of meniscectomy by manipulation etc.	mAE: 6.6%	mAE: 2.9%
Moseley 2002	Review Board / NC	Arthroscopic debridement / Knee osteoarthritis	Simulated arthroscopy preparation, intravenous anaesthesia, skin incisions, no instruments entered knee, knee manipulated	No procedural AE	
Pham 2004	Review Board /			No MAE	
	NC	0	Intraarticular	Any mAE: 81.7%	Any mAE: 1.2%
Altman 2004 Chevalier 2010	committee / C ClinicalTrials.org	Hyaluronic acid / Knee osteoarthritis	injection of saline solution	No MAE	
				mAE: 12.8%	mAE: 8%
				No MAE	
	/c			mAE: 35,8%	mAE: 33,8%
Kallmes 2009	Review Board / NC	Percutaneous vertebroplasty with	Conscious sedation + local anesthaesia, pressure put on spine, simulation of odor with mixing of PMMA to imitate the smell during the	No mAE: 14%	MAE mAE: 16%
		PMMA cement	active procedure		
Buchbinder 2009	Ethics committee at each participating center / NC	injection / vertebral compression fracture	Conscious sedation + local anesthaesia, needle inserted to rest on the lamina, PMMA container opened to imitate the smell during the active procedure	No procedural AE	
Cohen 2012	Review Board / NC	Epidural injection of corticosteroids /	2 ml sterile water at 1-2 injection sites, transforaminal approach	No mAE:36%	MAE mAE: 20%
Arden 2005	Ethics	Sciatica	2 mL saline into	No	MAE
	committee / NC		interspinous ligament	mAE: 9%	mAE: 10%

2	
3	
4	
5 6	
7	
8	
9 10	
11	
12	
13	
15	
16	
11 12 13 14 15 16 17 18 19 20	
19	
20	
21	
21 22 23 24	
24	
25	
26 27	
28	
29	
30 31	
32	
33	
34 35	
36	
36 37	
38 39	
39 40	
41	
42 43	
43 44	
45	
46	
47 48	
49	
50	
51 52	
53	
54	
55 56	
56 57	
58	
59	
60	

LeWitt 2011	Review Board /	Insertion of AAV-	Insertion of catheter	Nol	
		pigmental cells / Parkinson's disease	holes, no cell transplantation	MAE: 23%	MAE: 0
Gross 2011	Review Board / C	Transplantation of human retinal	Scalp incisions, partial thickness burr	1 death	0 deaths
	C	AAV2-Neurturin / Parkinson's disease	partial thickness burr holes, no intracranial injections	Most frequent mAE: headache: 68%	Most frequent mAE: headache: 50%
Marks 2010	Review Board /	Gene delivery of	cyclosporine Scalp incisions,	MAE: 4	MAE: 0
Olanow 2003	Review Board / NC	Fetal nigral transplantation, 4 donors / Parkinson's disease	Scalp incisions, partial thickness burr holes, no cell transplantation, 6 months low-dose	No I mAE (rate/patient day: 0,66	MAE mAE (rate/patient day: 0,39
Kvarstein 2009	Ethics committee / NC	Percutaneous intradiscal radiofrequency thermocoagulation (PIRFT) / discogenic low back pain	17-gauge canula and RF-probe inserted into annulus, no RF current applied	Not reported	
Pauza 2003	Review Board / NC	pain	17-gauge needle introduced onto the outer annulus, mock electrode passage shown on monitor, generator noises produced	Not reported	
lversen 2011 Freeman 2005	committee / NC Ethics committee / NC Ethics committee / C	Intradiscal electrothermal therapy (IDET) / discogenic low back	epidural space, interlaminar approach Subcutaneous injection of 2 mL saline superficial to the sacral hiatus 17-gauge introducer needle inserted into disc under fluoroscopic guidance, catheter inserted but not connected to generator, both subject and surgeon blinded.	mAE: 6% Not re No I mAE: 11%	
Valat 2002	Ethics		2 mL saline into	No I	MAE

	С	GAD gene into	caudal to nucleus,	mAE	mAE
		subthalamic nucleus	infusion of saline	(probably	(probably
		/ Parkinson's		related to	related to
		disease		procedure):	procedure):
				56%	14%
Dowson 2008	Ethics	Patent foramen	General anesthesia,	MAE	MAE
	committee / C	ovale closure with	skin incision in the	(possibly or	(possibly or
		STARFlex Septal	groin	probably	probably
		Repair Implant /		related to	related to
		migraine		procedure):	procedure):
				11%	4%
C=commercial; NC=non-commerical; MAE=major adverse events; mAE=minor adverse events;					
PMMA=polymethylmethacrylate; AAV2 =adeno-associated; GAD=glutamic acid decarboxylase					

Fourteen trials from the systematic reviews fulfilled at least four of the five methodological criteria.^{33 34 37-48} Seven trials provided through searches in MEDLINE fulfilled the same criteria.^{35 36 49-53} The included and excluded secondary endpoints are shown in web appendix table 3. All trials reported approval of study protocol prior to patient enrolment (table 1). Seven trials were commercially funded.^{38 39 47 50-53} Most of the trials had few participants, ranging from 20 to 346 (median 80).

Clinical outcomes after active treatment and sham

Twelve of the 21 trials showed a large ES on primary endpoints after active treatment, while 11 trials showed a similar ES after the sham procedure (figure 2, table 2).

Author / procedure	Limit disease duration / time to follow-up (months)	Trial arm / no of patients randomised	ES primary endpoint	ES pooled secondary endpoints (no of endpoints)
Leon 2005 / Percutaneous			Exercise duration	
myocardial laser revascularization	None / 12		(s)	(10)
		Active / 98	0.23	0.60
		Sham / 102	0.22	0.54
ES active treatment vs sham			0.01	0.07
Salem 2004 / Percutaneous myocardial laser revascularization	None / 12		Exercise duration (s)	-
		Active / 40	0.04	

Table 2. Effect size (ES) on primary and pooled secondary endpoints, showing differences between

		Sham / 42	0.08		
ES active treatment vs sham			-0.04		
Sihvonen 2013 / Arthroscopic partial			Lysholm knee		
meniscectomy	>3 / 12		score	(4)	
		Active / 70	0.86	0.58	
		Sham / 76	1.03	0.58	
ES active treatment vs sham			-0.17	7	0.0
Moseley 2002 / Arthroscopic			Knee Specific Pain		
debridement	None / 12		Scale	(5)	
0		Active / 59	0.54	0.11	
		Sham / 60	0.85	0.20	
ES active treatment vs sham			-0.31	-	-0.
Pham 2004 / Hyaluronic acid			VAS Pain	(3)	
	None / 12	Active / 131	1.48	1.35	
		Sham / 85	1.54	1.30	
ES active treatment vs sham			-0.06	j	0.0
Chevalier 2010 / Hyaluronic acid			Womac A	Womac C function	
	None / 6	Active / 124	1.52	1.13	
		Sham / 129	1.18	1.07	
ES active treatment vs sham		Sharry 125	0.34		0.0
Altman 2004 / Hyaluronic acid	None / 6		Womac pain	(2)	
		Active / 172	0.76	0.38	
		Sham / 174	0.85	0.53	
ES active treatment vs sham			-0.09		-0.:
Kallmes 2009 / Percutaneous	-12/1		Roland-Morris Disability	(7)	
vertebroplasty	<12/1		Questionnaire	(7)	
		Active / 68	0.86	0,72	
		Sham / 63	0.81	0.63	
ES active treatment vs sham			0.05		0.
Buchbinder 2009 / Percutaneous					
vertebroplasty	<12/6		Pain Score	(4)	

			0.83	
		Sham / 40	0.71	0.51
ES active treatment vs sham			0.12	-0.0
Cohen 2012 / Epidural injection of				
corticosteroids	<6/1		NRS leg pain	(2)
			4 5 4	0.00
		Active / 28	1.51	0.88
		Sham / 30	0.82	0.39
ES active treatment vs sham			0.69	0.4
Iversen 2011 / Epidural injection of			Oswestry disability	
corticosteroids	>3 / 12		index	-
		Active / 36	1.68	
		Active / 50	1.00	
		Sham / 40	1.85	
ES active treatment vs sham			-0.17	
Arden 2005 / Epidural injection of			Oswestry disability	
corticosteroids	>1<18 / 12		index	(2)
		Active /120	1.42	1.14
		Cham / 100	1.44	1 21
		Sham / 108	1.44	1.21
ES active treatment vs sham			-0.02	-0.0
Valat 2002 / Epidural injection of conticosteroids	<6/1		VAS Pain	(3)
	(0)1		VASTUIT	(3)
		Active / 42	1.85	1.10
		Sham / 43	1.47	0.99
ES active treatment vs sham		5110117 45	0.38	
ES active treatment vs sham Freeman 2005 / Intradiscal			Oswestry disability	0.1
electrothermal therapy	≥3 / 6		index	(6)
				(0)
		Active / 38	0.10	-0.03
		Sham / 19	0.07	0.12
ES active treatment vs sham			0.17	
Pauza 2003 / Intradiscal			Oswestry disability	0.1
electrothermal therapy	>6/6		index	(3)
		Active / 32	0.94	0.90
	1	I .	0.35	0.46
		Sham / 24	0.33	0.40
ES active treatment vs sham		Sham / 24	0.55	
ES active treatment vs sham Kvarstein 2009 / Percutaneous intradiscal radiofrequency		Sham / 24		

BMJ Open

thermocoagulation				
		Active / 10	0.34	0.54
		Sham / 10	0.23	0.24
ES active treatment vs sham			0.11	0.3
Olanow 2003 / Fetal nigral transplantation	None / 24		UPDRS 3 off	(5)
		Active / 12	0.04	-0.24
		Sham / 11	- 0.44	-0.19
ES active treatment vs sham			0.48	-0.0
Marks 2010 / Gene delivery of AAV2- Neurturin	≥60/12		UPDRS 3 off	(7)
		Active / 38	0.72	0.23
		Sham / 20	0.53	-0.05
ES active treatment vs sham			0.19	0.2
Gross 2011 / Transplantation of human retinal pigmental cells	≥60 / 12		UPDRS 3 off	(2)
		Active / 35	1.09	0.08
		Sham / 36	0.88	0.06
ES active treatment vs sham			0.21	0.0
LeWitt 2011 / AAV-GAD gene into subthalamic nucleus	≥60 / 6	Q	UPDRS 3 off	(7)
		Active / 16	1.00	0.30
		Sham / 21	0.42	0.21
ES active treatment vs sham			0.58	0.0
Dowson 2008 / Patent foramen ovale closure	None / 6			Headache Impac Test
		Active / 74	0.74	1.02
		Sham / 73	0.45	1.06
			0.28	0.0

ES on primary endpoints was moderate in three of the active treatment groups and in two of the sham groups.

On pooled secondary endpoints, a large ES was estimated in seven trials after active treatment and in five trials after sham, while a moderate ES was reported in four and three trials respectively (table 2).

In none of the trials did the actively treated group show a deterioration of primary endpoint during treatment, while this was the case for two of the sham groups (not reported to be related to the procedure). On secondary endpoints, deterioration occurred in two active treatment and two sham groups (table 2).

Differences in outcome between active treatment and sham Better results on primary endpoints were reported with active treatment compared to sham in 14 of the 21 trials, but the differences were small. Three trials (one epidural study⁴³, one discogenic pain study⁴⁶ and one Parkinson study⁵²) reported a moderate effect but none showed a large effect (figure 3, table 2). Seven trials reported a better primary endpoint outcome after sham than after active treatment.

Nineteen trials reported secondary endpoints, 11 of these reported better outcome after active treatment than after sham, but in no case did the differences reach a moderate ES (figure 3, table 2). In twelve trials, the outcome was better for primary than for pooled secondary endpoints. This bore no relation to funding source.

On regression analyses, effect sizes in the sham groups predicted about 80 % of the variance of ES in the active treatment groups, both on primary and pooled secondary endpoints (figure 4 and 5).

Adverse events

Eighteen studies provided information about adverse events (AE) (table 1). Three of these trials reported no procedural adverse events in any of the groups.^{33 35 41} Major AEs were reported after active treatment in four trials^{34 50 51 53} including one death in one of the Parkinson studies.⁵¹ In the sham groups, one trial⁵³ listed three major AEs possibly or probably related to the procedure, all thought to be caused by antiplatelet medication, none of them life-threatening. Apart from this trial, there were no major AEs in the sham groups. The reported minor AEs were all of limited duration.

DISCUSSION

Principal findings

Analysis of 21 sham-controlled trials of minimally invasive procedures showed that the effect sizes in the active treatment arms were predicted by the effect sizes in the sham

57

58

59 60 arms. There was a large ES on primary endpoints in about half of both the active and sham interventions, but none of the trials showed a large difference in ES between active treatment and sham groups either on primary or secondary endpoints.

The magnitude of the effect in each trial arm varied considerably, both between different procedures and between trials using the same procedure. For instance, in the active treatment groups, ES for primary endpoints varied from around zero to almost 2 after active treatment, and from about -0.4 to 1.5 after sham. Disparate outcomes were reported even between trials where technical parameters were similar. For instance, ES in the sham group in the three hyaluronic acid-trials varied by a factor of three, and in the epidural trials by a factor of two. This variability is probably related to differences in study design, duration of disability before inclusion, contextual factors, including the doctorpatient relationship as well as other factors. The close association between endpoints in the active treatment and sham groups on regression analyses suggests that a large part of the reported outcomes in the active treatment groups are due to placebo effects, statistical regression to the mean or the natural course of the condition.

Strengths and limitations of study

It is our opinion that the calculation of effect sizes in both active treatment and placebo arms is a strength of the present study. This made it possible to assess the magnitude of change in both arms and the contribution of non-specific factors to change in the active treatment arms. The calculation of effect sizes provides an alternative assessment to probability estimates. Another strength of the study is the supplementary analyses of pooled secondary endpoints, enabling a more comprehensive evaluation than using primary endpoints alone. Reports of tactically motivated use of primary and secondary endpoints before publication in order to improve study results strengthen the argument for registering all relevant secondary endpoints.⁵⁴ Our finding that a majority of trials reported better results on primary than on secondary endpoints might lend support to such a hypothesis, although all trials, according to the authors, had sought and gained approval of the protocol from ethics committee and/ or review board (table 1).

The present review is limited to selected minimally invasive procedures in cardiology, neurology, and musculoskeletal conditions. While some procedures are, or have been, in wide clinical use, some are still in the clinical trial phase. Other sources of heterogeneity are variable duration of disease before inclusion, selection of outcome measures and time to follow-up. Results cannot be generalised to minimally invasive procedures in all medical disciplines, but a similar methodology could be applied to more systematic analyses of

the role of non-specific effects in other minimally invasive procedures.

We applied principles from guidelines for conducting systematic reviews and meta-analyses and included an independent assessment of methodological trial quality by two of the authors. We cannot rule out that we have missed relevant trials because we limited our search to the Cochrane Library and MEDLINE, but most relevant trials are likely to have been identified by our searches. By preferentially selecting core journals and trials that had previously been methodologically evaluated in systematic reviews, it was our intention to reduce the risk of bias by excluding studies of low quality. We realize that this selection process and the fact that we relied on previous methodological evaluations may have contributed to unrecognised selection bias.

The use of ES as a measure of clinical effect assumes a normal distribution of the data. This does not necessarily apply in the included trials because the majority of them are small. Including trials reporting non-parametric data would however necessitate other methods of statistical analysis. Small studies increase the likelihood of type-2 errors, though this is more relevant to probability estimates than analysis of ES.

Adequate blinding and lack of physiological effects?

We cannot rule out that treatment-specific effects in the actively treated groups may have jeopardised blinding, leading to overestimation of treatment effects through positive expectations. However, all the included trials gave a detailed description of the sham procedure, and both participant and assessor blinding seems to have been adequate.

On a more general level, it has been argued that sham procedures are not inert and may have specific physiological effects, thereby underestimating a treatment effect.⁵⁵ More recently, Bickett et al. hypothesised that epidural injection of small volumes of saline might have physiological effects.⁵⁶ However, it is to be noted that in the four selected epidural trials in the present study, improvements in the sham group were greater in the two trials using non-epidural saline than in those using epidural saline, making a physiological effect less likely. In our opinion, physiological effects of the sham interventions are also unlikely in the remaining procedures.

Surgery and other invasive procedures are commonly believed to be associated with enhanced placebo effects, a phenomenon coined mega-placebo.⁵⁷ In spite of their heterogeneous nature, the 21 selected trials share a medicotechnological context in which an a priori enhanced placebo response could be expected. If an ES >0.8 is considered as mega-placebo, half of the included sham interventions reached

59 60 this level. Factors such as the level of enthusiasm and conviction conveyed by the therapist, the impression of advanced procedures and the extent to which these factors succeed in activating a placebo response are probably crucial in explaining the improvements after sham interventions and the correlation of endpoints in the active treatment and sham groups. Participants' perception of whether they received active treatment or sham has been shown to contribute more to clinical improvement than the biological effects per se.^{32 58}

Non-specific factors

The role of non-specific factors, primarily spontaneous remission or statistical regression-to-the-mean, in placebocontrolled studies is controversial.⁵⁹ A recent meta-analysis analysing 202 trials with an untreated group, spanning 60 different clinical conditions, found rather small differences between placebo and no treatment, with effect sizes in the range of 0.2 to 0.3.⁶⁰ Apart from acupuncture trials (mean ES 0.68), the authors did not include trials reporting the effectiveness of invasive procedures. Another meta-analysis studied the placebo effect of a range of treatments (pharmacological, non-pharmacological and surgical) for osteoarthritis of the hand, hip and knee.⁶¹ Of 198 included trials fourteen had a no-treatment arm. The mean ES in the placebo groups was about 0.5, while it was only slightly above zero in the no-treatment groups. The difference between the placebo and no-treatment groups was larger than the difference between the placebo and active treatment groups. Trials using injections, acupuncture and surgery had the largest placebo effects, and the effects were larger for subjective than objective endpoints. The authors concluded that there is a significant placebo effect on pain, stiffness and function in symptomatic osteoarthritis.

Because the trials in the present study did not include a notreatment arm (i.e. waiting list), we cannot rule out that the changes appearing during the trial period also reflect nonspecific factors, i.e. spontaneous improvement or regression to the mean. Such mechanisms would be expected to be most prominent in trials with brief illness duration before inclusion and with longer time to follow-up, while improvements in chronic, unremitting conditions such as Parkinson's disease would be more likely attributed to placebo. Interestingly, in three of the four included Parkinson trials, there were moderate to large improvements in the sham groups even at one-year follow-up.49-51 Other authors have also found improvements several years after sham surgery, indistinguishable from conventional surgery.^{32 62} This is in agreement with recent insights into the neurobiological effects of placebo and their relation to underlying psychological mechanisms, principally expectation and conditioning.⁶³

Are ethical objections to sham justified?

The use of sham in controlled surgical trials is a divisive issue, with scepticism, even frank opposition, being voiced by both ethics committees, involved surgeons and anaesthetists, and potential patients.⁶⁴ Ethical arguments include the inherent risks of sham procedures combined with the lack of obvious benefits to the participants. Barriers related primarily to feasibility include problems with patient and assessor blinding, differing technical expertise, the heterogeneity of the interventional techniques and variable outcome specifications, making standardization difficult to achieve. Existing ethical guidelines accept the role of placebo-controlled trials when certain conditions are met.⁶⁵ There must be genuine equipoise, i.e. conflicting or weak evidence of the effectiveness of a procedure. Blinding of both participants and assessors must be assured, and participants must freely consent to suspend knowledge of whether they are receiving sham or conventional treatment. The health risks and consequences of placebo or delayed treatment must be minimal, and outweighed by the societal importance of establishing the clinical utility of the intervention in question.⁶⁶⁶⁷

The selected trials gave a detailed description of adverse events in both active and sham-treated groups (table 1). The safety concerns frequently raised as an argument against the use of sham were generally not supported. Major adverse events related to the sham procedure were reported in only one of the trials⁵³ and they were short-lived and not life threatening. Minor adverse events were more frequent, but also of limited duration. Positive placebo-induced effects generally outweighed adverse events, thus weakening ethical arguments against the use of sham interventions. In our opinion, the consequences of the continued use of unproven invasive procedures are of a different magnitude. In the light of studies supporting the beneficial effects of sham procedures, at least for pain and Parkinson symptoms, research ethics committees should consider such factors in their risk-benefit assessments of planned sham controlled trials.^{68 69}

Clinical implications.

The present results are pertinent to the ongoing discussion about wasteful and unproven medical practices, and underscore the necessity for a continual assessment of existing or novel unproven procedures. Minimally invasive techniques have lowered the threshold for interventions, and led to their application to a wider clinical spectrum (indication creep) without an ongoing evaluation of effectiveness or safety.⁴ The last two decades have seen dramatic increases in the use of several of the described procedures, as well as interventions we have not investigated, such as acromioplasty, percutaneous coronary intervention and, more recently, robotic surgery.⁷⁰⁻⁷⁵

In light of the results in the present study, placebo effects might well explain a large part of the purported effects of such procedures. When clinicians and regulators are faced with claims of large treatment effects for insufficiently tested procedures, their default mode should be watchful scepticism. The standards of the evaluation process before approval and reimbursement of devices and procedures need to be strengthened, and economic or regulatory incentives that perpetuate the use of undocumented or harmful procedures should be abrogated.

CONCLUSION

Sham-controlled trials are unique in their ability to discriminate between true treatment effects and non-specific effects. The results of the present study suggest that placebo and other non-specific effects explain a large part of their purported benefits. Further, results indicate that the risks of adverse events in sham-controlled trials are overrated and could be considered acceptable in view of the potential personal harm and societal costs associated with unproven minimally invasive interventions.

Figure legends

Figure 1. Flow chart of study selection in the present metaanalysis.

Figure 2. Effect sizes of active treatment and sham, primary endpoints.

Figure 3. Differences in effect size between active treatment and sham.

Figure 4. Association between effect sizes of primary endpoints in active treatment and sham arms. Linear regression, 95% confidence intervals. N=21.

Figure 5. Association between effect sizes of pooled secondary endpoints in active treatment and sham arms. Linear regression, 95% confidence intervals. N=19.

References

1. Prasad V, Vandross A, Toomey C et al. A decade of

reversal: an analysis of 146 contradicted medical

practices. Mayo Clin Proc 2013;88:790-8.

		20
2.	Tiago V. Pereira TV, Horwitz RI et al. Empirical	
	Evaluation of Very Large Treatment Effects of Medical	
	Interventions. JAMA 2012; 308 :1676-84.	
3.	Roberts AL, Kewman DG, Mercier L et al. The power of	
	nonspecific effects in healing: implications for	
	psychosocial and biological treatments. Clin Psychol	
	<i>Rev</i> 1993; 13 :375-91.	
4.	Garner S, Littlejohns P. Disinvestment from low value	
	clinical interventions: NICEly done? BMJ	
	2011; 343 :d4519.	
5.	Scott IA, Elshaug AG. Foregoing low-value care: how	
	much evidence is needed to change beliefs? Intern	
	Med J 2013; 43 :107-9.	
6.	Obremskey WT, Pappas N, Attallah-Wasif E et al. Level	
	of evidence in orthopaedic journals. J Bone Joint Surg	
	Am 2005; 87 :2632-8.	
7.	Reeves B. Health-technology assessment in surgery.	
	Lancet 1999; 353 :Suppl 1:S13-S15;	
8.	Wenner DM, Brody BA, Jarman AF et al. Do surgical trials meet the scientific standards for clinical trials? J	
	trials meet the scientific standards for clinical trials? J	
	Am Coll Surg 2012; 215 :722-30.	
9.	Ezekiel JE, Miller FG. The Ethics of Placebo-Controlled	
	Trials — A Middle Ground. N Engl J Med 2001; 345 :915-	
	9.	
10.	. Campbell MK, Entwistle VA, Cuthbertson BH et al.	
	Developing a placebo-controlled trial in surgery: issues	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	
3	of design, acceptability and feasibility. Trials
4	
5	2011; 12 :50
6 7	
8	1. Cochrane Handbook for Systematic Reviews of
9	
10	Interventions. Version 5.1.0.
11	
12	http://handbook.cochrane.org; (11.11.2014)
13	
	2. Liberati A, Altman DG, Tetzlaff J et al. The PRISMA
15	
16	statement for reporting systematic reviews and meta-
17	
18 19	analyses of studies that evaluate healthcare
20	
21	interventions: explanation and elaboration. BMJ
22	
23	2009; 339 :b2700.
24	
20	3. Cohen J. Statistical power analysis for the behavioral
26	
27	sciences. Hillsdale, NJ: Lawrence Erlbaum Associates,
28	
29	1988.
30 31 12	
32	4. Durlak JA. How to Select, Calculate, and Interpret
33	
34	Effect Sizes. J Pediatr Psychol 2009; 34: 917-28.
35	
36	5. MedCalc Software bvba, Ostend, Belgium;
37	
38	http://www.medcalc.org; (08.03.2014).
39	
	5. Nath S, Nath CA, Pettersson K et al. Percutaneous
41 42	
43	lumbar zygapophysial (Facet) joint neurotomy using
44	redictrocurrent in the monogement of chaption
45	radiofrequency current, in the management of chronic
46	low had noise a randomized double blind trial Caine
47	low back pain: a randomized double-blind trial. Spine
48	2008 ;33:1291-7.
49	2008,55.1251-7.
50	7. Patel N, Gross A, Brown L et al. A randomized, placebo-
51 1 [°] 52	. Paterin, Gross A, Brown L et al. A fandomized, placebo-
53	controlled study to assess the efficacy of lateral branch
54	controlled study to assess the efficacy of fateral branch
55	neurotomy for chronic sacroiliac joint pain. Pain Med
56	
57	2012;13:383-398.
58	. ,
59	
60	

Randomized placebo-controlled study evaluating

lateral branch radiofrequency denervation for

sacroiliac joint pain. Anesthesiology 2008;109:279-88.

19. Tekin I, Mirzai H, Ok G et al. A comparison of

conventional and pulsed radiofrequency denervation

in the treatment of chronic facet joint pain. Clin J

Pain 2007;23:524-9.

- 20. Leclaire R, Fortin L, Lambert R et al. Radiofrequency facet joint denervation in the treatment of low back pain: a placebo-controlled clinical trial to assess efficacy. Spine 2001;26:1411-6.
- 21. van Wijk RM, Geurts JW, Wynne HJ et al.

Radiofrequency denervation of lumbar facet joints in the treatment of chronic low back pain: a randomized, double-blind, sham lesion-controlled trial. Clin J

Pain 2005 ;**21**:335-44.

- Rutjes AWS, Jünl P, da Costa BR et al. Viscosupplementation for Osteoarthritis of the Knee. A 22. Rutjes AWS, Jünl P, da Costa BR et al. 2012;**157**:180-91.
- 23. Pinto RZ, Maher CG, Ferreira ML et al. Epidural corticosteroid injections in the management of sciatica: a systematic review and meta-analysis. Ann Intern Med 2012;157:865-77.

	\mathbf{a}
• •	
	•

Page 23 of 76	BMJ Open	
1		23
2	24. McGillion M, Cook A, Victor JC et al. Effectiveness of	
4		
5	percutaneous laser revascularization therapy for	
7 8	refractory angina. Vasc Health Risk Manag 2010;6:735-	
9 10	47.	
11 12	25. Helm S II, Deer TR, Manchikanti L et al. Effectiveness of	
13 14	thermal annular procedures in treating discogenic low	
15 16	back pain. <i>Pain Physician</i> 2012; 15 :E279-E304.	
17	26. Shi MM, Cai XZ, Lin T et al. Is there really no benefit	
19 20		
21 22	of_vertebroplasty_for osteoporotic vertebral fractures?	
23	A meta-analysis. Clin Orthop Relat Res 2012; 470 :2785-	
24 25	99.	
	27. Petrella RJ, Cogliano A, Decaria J. Combining	
28 29	two hyaluronic acids in osteoarthritis of the knee: a	
30 31	randomized, double-blind, placebo-controlled trial.	
32 33	Clin Rheumatol 2008; 27 :975-81.	
34 35		
36 ⁴ 37	28. Lundsgaard_C, Dufour N, Fallentin E et al. Intra-articular	
38 39	sodium hyaluronate 2 mL versus physiological saline 20	
40 41	mL versus physiological saline 2 mL for painful knee	
42 43	osteoarthritis: a randomized clinical trial. Scand J	
44 45	osteoarthritis: a randomized clinical trial. <i>Scand J</i> <i>Rheumatol</i> 2008 ; 37 :142-50.	
46	29. Karppinen J, Malmivaara A, Kurunlahti M et al.	
48 49	Periradicular infiltration for sciatica: a randomized	
50 51	controlled trial. <i>Spine</i> 2001; 26 :1059-67.	
52	30. Freed CR, Greene PE, Breeze RE et al. Transplantation	
54 55		
56	of embryonic dopamine neurons for severe Parkinson's	
57 58	disease. N Engl J Med 2001; 344 :710-9.	
59 60		1

 31. Gordon PH, Yu Q, Qualls C et al. Reaction time and movement time after embryonic cell implantation in Parkinson disease. <i>Arch Neurol</i> 2004;61:858-61. 32. McRae C, Cherin E, Yamazaki TG et al. Effects of 	
movement time after embryonic cell implantation in Parkinson disease. <i>Arch Neurol</i> 2004; 61 :858-61. 32. McRae C, Cherin E, Yamazaki TG et al. Effects of	
Parkinson disease. <i>Arch Neurol</i> 2004; 61 :858-61. 32. McRae C, Cherin E, Yamazaki TG et al. Effects of	
32. McRae C, Cherin E, Yamazaki TG et al. Effects of	
perceived treatment on quality of life and medical	
outcomes in a double-blind placebo surgery trial. Arch	
Gen Psychiatry 2004; 61 : 412-20.	
33. Salem M, Rotevatn S, Stavnes S et al. Usefulness and	
safety of percutaneous myocardial laser	
revascularization for refractory angina pectoris. Am J	
Cardiol 2004; 93 :1086-91.	
34. Leon MB, Kornowski R, Downey WE et al. A blinded,	
randomized, placebo-controlled trial of percutaneous	
laser myocardial revascularization to improve angina	
symptoms in patients with severe coronary disease. J	
Am Coll Cardiol 2005; 46 :1812-9.	
35. Moseley JB, O'Malley K, Petersen NJ et al. A controlled	
trial of arthroscopic surgery for osteoarthritis of the	
knee. <i>N Engl J Med</i> 2002; 347 :81-8.	
knee. <i>N Engl J Med</i> 2002; 347 :81-8. 36. Sihvonen R, Paavola M, Malmivaara A et al.	
Arthroscopic partial meniscectomy versus sham	
surgery for a degenerative meniscal tear. N Engl J Med	
2013; 369 :2515-24.	
37. Pham T, Le Henanff A, Ravaud P et al. Evaluation of the	
symptomatic and structural efficacy of a	
new_hyaluronic_acid compound, NRD101, in	

BMJ Open

1	
2	comparison with discoursin and placeho in a 1 year
3 4	comparison with diacerein and placebo in a 1 year
5	randomised controlled study in symptomatic knee
7 8	osteoarthritis. Ann Rheum Dis 2004;63:1611-7.
0	. Altman RD, Akermark C, Beaulieu AD et al. Efficacy and
11 12	safety of a single intra-articular injection of non-animal
13 14	stabilized_hyaluronic_acid (NASHA) in patients with
15 16	osteoarthritis of the knee. Osteoarthritis
17 18	Cartilage 2004; 12 :642-9.
19	
20 39 21	O. Chevalier_X, Jerosch J, Goupille P et al. Single, intra-
22 23	articular treatment with 6 ml hylan G-F 20 in patients
24 25	with symptomatic primary osteoarthritis of the knee: a
26 27	randomised, multicentre, double-blind, placebo
28 29	controlled trial. Ann Rheum Dis 2010;69:113-9.
30 31 40). Kallmes DF, Comstock BA, Heagerty PJ et al. A
32 33 34	randomized trial of vertebroplasty for osteoporotic
35 36	spinal fractures. N Engl J Med 2009; 361 :569-79.
37	. Buchbinder R, Osborne RH, Ebeling PR et al. A
39 40	randomized trial of vertebroplasty for painful
41 42	osteoporotic vertebral fractures. N Engl J Med
43 44	
45	2009; 361 :557-68.
46 42 47 42	. Iversen T, Solberg TK, Romner B et al. Effect of caudal
48 49	epidural steroid or saline injection in chronic lumbar
50 51	radiculopathy: multicentre, blinded, randomised
52 53	controlled trial. BMJ 2011; 343 :d5278.
54 55 43	Cohon SD White DL Kuribara Catal Enidural staraids
56	. Cohen SP, White RL, Kurihara C et al. Epidural steroids,
57 58	etanercept, or saline in subacute sciatica: a
59	

1

multicenter, randomized trial. Ann Intern Med

2012;**156**:551-9.

44. Arden NK, Price C, Reading I et al. A multicentre

randomized controlled trial of_epidural_corticosteroid

injections for sciatica: the WEST study.

Rheumatology 2005;44:1399-406.

45. Valat JP, Giraudeau B, Rozenberg S et al.Epidural corticosteroid injections for sciatica: a randomised, double blind, controlled clinical trial. *Ann Rheum Dis* 2003;62:639-43.

46. Pauza KJ, Howell S, Dreyfuss P et al. A randomized, placebo-controlled trial of intradiscal electrothermal therapy for the treatment of discogenic low back pain. *Spine* J 2004;**4**:27-35.

47. Freeman BJ, Fraser RD, Cain CM et al. A randomized, double-blind, controlled trial: intradiscal electrothermal therapy versus placebo for the treatment of chronic discogenic low back pain. *Spine* 2005;**30**:2369-77.

48. Kvarstein G, Måwe L, Indahl A et al. A randomized double-blind controlled trial of intra-annular radiofrequency thermal disc therapy--a 12-month follow-up. *Pain* 2009;**145**:279-86.

49. Olanow CW, Goetz CG, Kordower JH et al. A doubleblind controlled trial of bilateral fetal nigral

BMJ Open

1	
2	
3	transplantation in Parkinson's disease. Ann Neurol
4 5	2003; 54 :403-14.
6	2003, 34 .403-14.
7	. Marks WJ Jr, Bartus RT, Siffert J et al. Gene delivery of
8	. Marks wish, Bartas Kr, Smert's et al. Gene delivery of
9	AAV2-neurturin for Parkinson's disease: a double-
10	
11 12	blind, randomised, controlled trial. Lancet Neurol
13	
14	2010; 9 :1164-72.
15	
	. Gross RE, Watts RL, Hauser RA et al. Intrastriatal
17 18	
19	transplantation of microcarrier-bound human retinal
20	pigment epithelial cells versus sham surgery in patients
21	pignent epithena eens versus sham surgery in patients
22	with advanced Parkinson's disease: a double-blind,
23 24	
24 25	randomised, controlled trial. Lancet Neurol
26	
27	2011; 10 :509-19.
28	
	. LeWitt PA, Rezai AR, Leehey MA et al. AAV2-GAD gene
30 31	the way of an education of Daulin and a discrete state of the
32	therapy for advanced Parkinson's disease: a double-
33	blind, sham-surgery controlled, randomised trial.
34	Sind, shan surgery controlled, fundomised that.
35	Lancet Neurol 2011; 10 :309-19.
36 37	
38 53	. Dowson A, Mullen MJ, Peatfield R et al. Migraine
39	
40	Intervention With STARFlex Technology (MIST) trial: a
41	
42 43	prospective, multicenter, double-blind, sham-
43	controlled trial to evolute the offectiveness of nations
45	controlled trial to evaluate the effectiveness of patent
46	foramen ovale closure with STARFlex septal repair
47	
48	implant to resolve refractory migraine headache.
49 50	, , ,
51	Circulation 2008; 117 :1397-404.
52	
	. Hannink G, Gooszen HG, Rovers MM. Comparison of
54	
55 56	registered and published primary outcomes in
57	
58	
59	

randomized clinical trials of surgical interventions. Ann

Surg 2013;257:818-23.

55. Birch S. A review and analysis of placebo treatments,

placebo effects, and placebo controls in trials of

medical procedures when sham is not inert. J Altern

Complement Med 2006;**12**:303-10.

56. Bicket MC, Gupta A, Brown CH 4th et al.

Epidural_injections for spinal pain: a systematic review and meta-analysis evaluating the "control" injections in randomized controlled trials.

Anesthesiology. 2013;119:907-31.

- 57. Kaptchuk TJ, Goldman P, Stone DA et al. Do medical devices have enhanced placebo effects? *J Clin Epidemiol* 2000;**53**:786-92.
- 58. Einvik G, Tjomsland O, Kvernebo K et al. Preoperative expectations and clinical outcome of transmyocardial laser treatment in patients with angina pectoris. *Tidsskr Nor Laegeforen* 2002;**122**:2102-4.
- 59. Turner JA, Deyo RA, Loeser JD et al. The importance of placebo effects in pain treatment and research. *JAMA* 1994;**271**:1609-14.
- 60. Hróbjartsson A, Gøtzsche PC. Placebo interventions for all clinical conditions. *Cochrane Database Syst Rev* 2010; CD003974.
- 61. Zhang W, Robertson J, Jones AC et al. The placebo effect and its determinants in osteoarthritis: meta-

1	
2	
3 4	analysis of randomised controlled trials. Ann Rheum
5	Dis 2008; 67 :1716-23.
-	. Marchand S, Kupers RC, Bushnell MC et al. Analgesic
9 10	and placebo effects of thalamic stimulation. Pain
11 12	2003; 105 :481-8.
13	. Finniss DG, Kaptchuk TJ, Miller F et al. Biological,
15	
16 17	clinical, and ethical advances of placebo effects. Lancet
18 19	2010; 375 :686-95.
20	. Campbell MK, Entwistle VA, Cuthbertson BH et al.
22 23	Developing a placebo-controlled trial in surgery: issues
24	of design, acceptability and feasibility. <i>Trials</i>
25 26	
27 28	2011; 12 :50. doi: 10.1186/1745-6215-12-50.
29 65	. Snyder L. Review of the American College of Physicians
30 31	Ethics Manual, Sixth Edition. Ann Intern Med
32 33	2012; 156 (1_Part_2):73-104.
34 35	
36 66	. Flum DR. Interpreting surgical trials with subjective
37 38	outcomes: avoiding UnSPORTsmanlike conduct.
39 40	JAMA 2006; 296 :2483-5.
41	
42 67 43	. Heckerling PS. Placebo surgery research: a blinding
44 45	JAMA 2006; 296 :2483-5. . Heckerling PS. Placebo surgery research: a blinding imperative. J Clin Epidemiol 2006;59:876-80.
46 69	. Brim RL, Miller FG. The potential benefit of
47 00 48	
49	the placebo effect in sham-controlled trials:
50 51	implications for risk-benefit assessments and informed
52 53	concert / Med Ethics 2012-20-702 7
54	consent. <i>J Med Ethics</i> 2013; 39 :703-7.
55 69 56	. Redberg RF. Sham controls in medical device trials. <u>N</u>
57	<u>Engl J Med</u> 2014; 371 :892-3.
58 59	
60	

29

		30
70	. Haahr JP, Østergaard S, Dalsgaard J et al. Exercises	
	versus arthroscopic decompression in patients with	
	subacromial impingement: a randomised, controlled	
	study in 90 cases with a one year follow up. Ann	
	<i>Rheum Dis</i> 2005; 64 :760-4.	
71	. Ketola S, Lehtinen J, Rousi T et al. No evidence of long-	
	term benefits of arthroscopic acromioplasty in the	
	treatment of shoulder impingement syndrome: Five-	
	year results of a randomised controlled trial. Bone	
	Joint Res 2013; 2 :132-9.	
72	. Herrlin S, Hållander M, Wange P et al. Arthroscopic or	
	conservative treatment of degenerative medial	
	meniscal tears: a prospective randomised trial. Knee	
	Surg Sports Traumatol Arthrosc 2007; 15 :393-401.	
73	. Yu E, Cil A, Harmsen WS et al. Arthroscopy and the	
	dramatic increase in frequency of anterior	
	acromioplasty from 1980 to 2005: an epidemiologic	
	study. Arthroscopy 2010; 26 ,Supplement:S142-7.	
74	•. Vitale MA, Arons RR, Hurwitz S et al. The rising incidence of acromioplasty. <i>J Bone Joint Surg Am</i>	
	incidence of acromioplasty. J Bone Joint Surg Am	
	2010; 92 :1842-50.	
75	. Brox JI, Staff PH, Ljunggren AE et al. Arthroscopic	
	surgery compared with supervised exercises in	
	patients with rotator cuff disease (stage II	
	impingement syndrome). <i>BMJ</i> 1993; 307 :899-903.	

BMJ Open

1	
2	
3	
4	Contributors: RH initiated and planned the project and
5	searched databases. JIB and OT assisted in developing
6	search strategies. Article screening and data extraction
7	
8	was carried out by RH. Quality of data extraction and
9	checking was carried out by JIB and OT. Statistical analysis
10	was undertaken by RH, who also wrote the draft. OT and
10	JIB reviewed the draft and contributed to manuscript
12	revisions. RH is the guarantor for this study.
	,
13	Funding sources: None.
14	runding sources. None.
15	All such as have as we lated the ICNAUT weifering disclosure
16	All authors have completed the ICMJE uniform disclosure
17	form at www.icmje.org/coi_disclosure.pdf and declare: no
18	support from any organisation for the submitted work; no
19	financial relationships with any organisations that might
20	have an interest in the submitted work in the previous
21	three years; no other relationships or activities that could
22	appear to have influenced the submitted work.
23	appear to have influenced the submitted work.
24	Tables I suggested a tables of the second second second for this
25	Ethical approval: Ethical approval was not required for this
26	work.
27	
28	Data sharing: Dataset can be obtained from Robin
29	Holtedahl (robi-hol@online.no).
30	
31	The lead author affirms that this manuscript is an honest,
32	accurate, and transparent account of the study being
33	
34	reported; that no important aspects of the study have
35	been omitted; and that any discrepancies from the study
36	as planned (and, if relevant, registered) have been
37	explained.
38	
	This is an Open Access article distributed in accordance
39	with the Creative Commons Attribution Non Commercial
40	(CC BY-NC 3.0) license, which permits others to distribute,
41	and the second second second second second second second second
42	
43	license their derivative works on different terms, provided
44	the original work is properly cited and the use is non-
45	commercial.
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

31

Placebo effects in trials evaluating 12 selected minimally invasive interventions: a systematic review and metaanalysis.

Robin Holtedahl, Jens Ivar Brox, Ole Tjomsland

Fram Rehabilitation Centre, Rykkinveien 100, 1349 Rykkin, Norway Robin Holtedahl Consultant Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Box 4956 Nydalen, 0424 Oslo, Norway Jens Ivar Brox Professor South-Eastern Norway Regional Health Authority, PB 404, 2303 Hamar, Norway Ole Tjomsland Director of Quality and Specialist Areas

; robi-hol@on... Correspondence to: Dr Robin Holtedahl; robi-hol@online, telephone +4790248973

Key words:

Placebo effects Invasive procedures Biomedical ethics Evidence based health care

Word count: 5801

Objectives To analyse the impact of placebo effects on outcome in trials of selected minimally invasive procedures, and to assess reported adverse events in both trial arms.

Design A systematic review and meta-analysis.

Data Sources and Study Selection We searched MEDLINE and Cochrane library to identify systematic reviews of musculoskeletal, neurological and cardiac conditions published between January 2009 and January 2014 comparing selected minimally invasive with placebo (sham) procedures. We searched MEDLINE for additional randomised controlled trials published between January 2000 and January 2014.

Data synthesis Effect sizes (ES) in the active and placebo arms in the trials' primary and pooled secondary endpoints were calculated. Linear regression was used to analyse the association between endpoints in the active and sham groups. Reported adverse events in both trial arms were registered.

Results We included 21 trials involving 2519 adult participants. For primary endpoints, there was a large clinical effect (ES ≥ 0.8) after active treatment in 12 trials and after sham procedures in 11 trials. For secondary endpoints, seven and five trials showed a large clinical effect, respectively. Three trials showed a moderate difference in ES between active treatment and sham on primary endpoints (ES ≥ 0.5) but no trials reported a large difference. No trials showed large or moderate differences in ES on pooled secondary endpoints. Regression analysis of endpoints in active treatment and sham arms estimated an R² of 0.78 for primary and 0.84 for secondary endpoints. Adverse events after sham were in most cases minor and of short duration.

Conclusion The generally small differences in effect size between active treatment and sham suggest that non-specific mechanisms, including placebo, are major predictors of the observed effects. Adverse events related to sham procedures were mainly minor and short-lived. Ethical arguments frequently raised against sham-controlled trials were generally not substantiated.

SUMMARY

Key messages

- The magnitude of change in the active treatment and placebo arms varied greatly, but about 80% of the variance in effect size of active treatment could be predicted by placebo effects, regression to the mean or spontaneous improvement.
- Adverse events related to sham procedures were mainly minor and short-lived, and frequently outweighed by positive placebo effects.

Strengths and limitations

- Selection of trials with low risk of bias
- Calculation of effect sizes on primary and pooled secondary endpoints in both active treatment and sham arms.
- Heterogeneous interventions, outcome measures and timing of assessment.

INTRODUCTION

It is normally assumed that medical practices are based on firm clinical evidence, and that new practices or techniques are introduced when superiority, or at least non-inferiority, has been demonstrated compared to established treatments. However, medical history reveals numerous examples contradicting this assumption. Forty-two percent of 146 medical practices were found to be reversed in a recent review analysing 10 years of publication in a high-impact medical journal.¹ Large effects of an intervention in initial reports are often spurious findings, while the vast majority may represent substantial overestimations.²

Even though surgical and other invasive techniques generally have reached a high degree of sophistication through the last decades, not all invasive procedures have lived up to expectations. Promising results in initial observational studies have in some cases led to widespread clinical implementation, in spite of lack of documented effectiveness.³ The reluctance to abandon contradicted medical practice is commonly ascribed to both culturally embedded medical practices and different forms of vested interests.⁴⁵ The continuation of unnecessary and potentially harmful interventions leads to major costs for both patients and society.

The randomised placebo-controlled trial is considered the gold standard for evaluating the effects of pharmacological treatments. However, there are relatively few controlled studies in peer-reviewed surgical journals, and even fewer placebo (sham)-controlled studies.⁶⁻⁸ Ethical concerns raised by the potential for harm to participants are usually cited as the main obstacle to sham-controlled studies.⁹ Problems of a practical nature relate to patient blinding, differing technical expertise, the heterogeneity of the interventional techniques and variable outcome specifications, making standardisation difficult to achieve.¹⁰

A meaningful effect in clinical trials may result from a large effect in the active treatment group, a small effect in the placebo group, or a combination. Even though a placebo effect has been documented in a range of clinical conditions, there are few studies assessing the magnitude of the placebo effect in surgical procedures. In the present study, we analysed placebo-controlled trials of minimally invasive interventions in musculoskeletal, neurological and cardiac conditions. The aims were threefold: (a) to assess the magnitude of change in outcome from baseline to trial endpoint in both the active treatment and placebo (sham) arms, (b) to explore the contribution of non-specific factors, including placebo, to the outcome of active treatment, and (c) to assess the level of reported adverse effects in both trial arms.

1

METHODS

Search strategy and selection criteria

We first conducted electronic searches for randomised placebo-controlled trials of minimally invasive interventions for cardiac, neurological and selected-musculoskeletal conditions. We primarily searched for interventions addressing subjective endpoints, including pain states, but included trials for Parkinson's disease. Open surgical and laparoscopic interventions and interventions targeting hard endpoints (i.e. hypertension) were excluded. We defined minimally invasive procedures as interventions involving the introduction of a medical device, substance or other foreign material into the body through a cannula, catheter or arthroscope, thereby minimising damage to biological tissues at the point of entrance. We first -- useding MEDLINE and Cochrane library to identify systematic reviews published between January 2009 and January 2014. The following key words were used in our search strategies: "randomi* controlled trial", "placebo OR sham" in combination with "low back pain", "neck OR cervical pain", "radiofrequency denervation", "facet joint AND "nerve block" OR injection", "intradiscal OR annular AND thermal", <u>"epidural AND corticosteroid* AND sciatica OR radic*",</u> "hyaluron* OR viscosuppl* AND knee AND osteoarthritis", "vertebroplast*", "arthroscop*", "debridement AND lavage AND knee AND osteoarthr*", "meniscectomy AND knee", "myocardial laser revascularization", "transplantation OR gene OR stem cell OR deep brain stimulation AND Parkinson* OR dystonia", "spinal cord stimulation", and "foramen ovale AND migraine". Sett inn søkestrategi, søkeord osv. We defined minimally invasive procedures as interventions involving the introduction of a medical device, substance or other foreign material into the body through a cannula, catheter or arthroscope, thereby minimising damage to biological tissues at the point of entrance. We excluded open surgical and laparoscopic interventions. Where applicable, Wwe used the "core clinical journals" filter in PubMed, which is an index of journals particularly relevant to practicing physicians.

From the most recently published systematic review of each procedureFrom the reviews, we selected randomised placebocontrolled trials published from-later than January 2000-to January 2014. Dette er ikke helt persist, fordi du har gjort søk på sham RCT på studier publisert etter siste inklusjonsdato I SR. We excluded earlier-trials published before January 2000 because our primary aim was to assess interventions that are currently, or until recently have been, in common use. We selected trials that according to the review fulfilled at least four of the following methodological criteria: random allocation, allocation concealment, blinding of participant, blinding of assessor and intention-to-treat analysis. We chose

these criteria both because they were the most commonly used in the selected reviews, and because use of scales for assessing quality or risk of bias is explicitly discouraged in Cochrane reviews¹¹. Two of the authors (RH and JIB) independently assessed the five methodological criteria in the RCTs included from systematic reviews.

We next searched MEDLINE for additional randomised placebo-controlled trials published between January 2000 and January 2014. Two of the reviewers (OT and JIB) independently assessed the five criteria mentioned above in the additional RCTs that were identified from this search.

Only English language journals were included. We excluded crossover trials, trials that did not report results as means, standard deviation, standard error or confidence intervals in both active and sham-groups, as well as trials with only graphic representation of data. This review is reported in accordance with the PRISMA statement.¹²

Data extraction

We registered all continuous primary endpoints. In trials without continuous primary endpoints, with multiple endpoints or no defined primary endpoint, we selected an outcome related to pain or condition-specific endpoint. The heterogeneity of trials did not allow for use of pain as a primary outcome. We used the RCTs' defined primary outcome to avoid bias introduced by choosing our own endpoint. We also registered secondary endpoints in order to avoid potential bias from selective reporting in the included trials. Endpoints describing medication, radiographic or physiological variables, social or psychological function, were not included. For the Parkinson-trials, only endpoints in the off-medication state were registered. Results from the last follow-up until 12 months were extracted. The trials' protocol registration, funding source, description of sham intervention, sample size, disease duration, length of follow-up and reported adverse events in both trial arms were registered.

Data synthesis

To assess clinically important change, we calculated effect size (ES, Cohen's d), based on the means and standard deviations (SD). We calculated ES both for the active and sham intervention to obtain information about the pre-to-post treatment change in both arms. Without first calculating ES of change in each trial arm, we would not be able to discern the relative contribution of placebo, which was one of the objectives of the study. Subtracting the average score after treatment from the average score before treatment and dividing the result by the average of the standard deviations before and after treatment calculated ES. An ES of 0.8 or more is assumed large, while an ES of 0.5 - 0.8 is considered moderate.¹³ In trials with multiple secondary endpoints we

1

calculated the pooled mean ES, without weighting. Because of small sample sizes in most of the included trials, we calculated an adjusted ES in accordance with a recommended procedure.¹⁴ Unadjusted linear regression analyses were used to explore the association between outcome in the active and sham groups both for primary and pooled secondary endpoints. For this analysis, we used Medcalc Statistical Software version 12.7.4.0¹⁵

RESULTS

Selection of interventions and trials

The searches provided sham-controlled trials of the following interventions: percutaneous laser revascularisation of myocardium for angina pectoris (n=2), closure of foramen ovale for migraine (n=1), arthroscopic meniscectomy for meniscal tears (n=1), debridement (n=1) and injection of hyaluronic acid (n=3) for symptomatic osteoarthritis of the knee, injection or transplantation of biologically active material for Parkinson's disease (human retinal pigmental cells (n=1), fetal nigral cells (n=1) and Neurturin (n=2)), - Because of the large number of described interventions for neck and back pain syndromes, we chose to restrict the analysis to shamcontrolled trials of the following interventions: epidural injections of corticosteroids for sciatica (caudal (n=1), interlaminar (n=2) and transforaminal (n=1)) routes, percutaneous heating of the intervertebral disc for chronic low back pain (intradiscal radiofrequency thermocoagulation (n=1), intradiscal electrothermal therapy (n=2)) and vertebroplasty for vertebral body fractures (n=2). We give a short description of each procedure's introduction, therapeutic rationale and history in web appendix table 1.

The searches provided no sham-controlled trials of <u>cervical</u>, thoracic or lumbar facet joint nerve blocks or joint injections, spinal cord stimulation for low back pain-, <u>cervical</u>-cervical epidural injections-, transmyocardial laser revascularisation for angina pectoris, deep brain stimulation for Parkinson's disease or dystonia or arthroscopic procedures other than knee conditions.- We found six placebo-controlled trials of radiofrequency denervation for low back pain, but all were excluded: SD not provided (n=1),¹⁶(ref) compound primary endpoint (n=1),¹⁷ (ref) risk of false positive response because of only one diagnostic block (n=4),¹⁸⁻²¹

Study selection

The study selection process is summarised in web appendix figure 1. Web appendix table 2 shows the excluded trials and the reasons for exclusion. The search provided five systematic reviews, all identified through searches in MEDLINE, none were commercially funded.²²⁻²⁶ It identified a total of 71 clinical trials, twelve of them were not identified from the systematic

60

2	
3 4 5	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
9 10 11 12 13 14 15 16 17 18	
18	
19	
20	
20 21 22	
22 23	
21	
24 25	
26	
27	
27 28 29 30 31 32 33 34 35 36	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43 44	
44 45	
45 46	
40 47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
EO	

59 60 reviews. Forty-four trials were excluded for methodological reasons, principally risk of bias. Six additional trials were excluded because ES could not be calculated.²⁷⁻³² Web appendix table 2 shows the excluded trials and the reasons for exclusion. Finally, 21 clinical trials with a total of 2519 participants were included in the present review (table 1). Trial interventions in active treatment and sham arms are also shown.

Author	Protocol approval / funding (commercial, non- commercial).	Invasive procedure / indication	Sham intervention	Adverse events related to procedure, active treatment	Adverse events related to procedure, sham
Leon 2005	Food and Drug Administration / NC	Percutaneous myocardial laser revascularization /	Laser turned on but no procedure	MAE in hospital (high dose): 4.1%	MAE in hospital: 0
Salem 2004	Ethics committee / NC	intractable angina pectoris	performed	No proce	edural AE
Sihvonen 2013	Review board /	Arthroscopic partial	Routine arthroscopy,	No MAE	
	NC	meniscectomy / degenerate meniscal tear	simulation of meniscectomy by manipulation etc.	mAE: 6.6%	mAE: 2.9%
Moseley 2002	Review Board / NC	Arthroscopic debridement / Knee osteoarthritis	Simulated arthroscopy preparation, intravenous anaesthesia, skin incisions, no instruments entered knee, knee manipulated	No procedural AE	
Pham 2004	Review Board / NC		Intraarticular	No MAE Any mAE: Any mA 81.7% 1.2%	
Altman 2004	Ethics committee / C	Ethics Hyaluronic acid / in	injection of saline solution	No l mAE: 12.8%	MAE mAE: 8%
Chevalier 2010	ClinicalTrials.org / C			No MAE mAE: 35,8% mAE: 33	
Kallmes 2009	Review Board /	Percutaneous vertebroplasty with	Conscious sedation + local anesthaesia,		MAE: 33,89 MAE

Buchbinder 2009	Ethics committee at each participating	PMMA cement injection / vertebral compression fracture	pressure put on spine, simulation of odor with mixing of PMMA to imitate the smell during the active procedure Conscious sedation + local anesthaesia, needle inserted to rest on the lamina,	mAE: 14%	mAE: 16%	
Cohen 2012	center / NC Review Board / NC		PMMA container opened to imitate the smell during the active procedure 2 ml sterile water at 1-2 injection sites, transforaminal	No	MAE	
			approach	mAE:36%	mAE: 20%	
Arden 2005	Ethics committee / NC	Epidural injection of	2 mL saline into interspinous ligament	No mAE: 9%	MAE mAE: 10%	
Valat 2002	Ethics committee / NC	corticosteroids / Sciatica		2 mL saline into epidural space, interlaminar approach	No mAE: 6%	MAE mAE: 8%
lversen 2011	Ethics committee / NC		Subcutaneous injection of 2 mL saline superficial to the sacral hiatus	Not reported		
Freeman 2005	Ethics committee / C	Intradiscal electrothermal therapy (IDET) / discogenic low back	17-gauge introducer needle inserted into disc under fluoroscopic guidance, catheter inserted but not connected to generator, both subject and surgeon blinded.	No mAE: 11%	MAE mAE: 5%	
Pauza 2003	Review Board / NC	pain	17-gauge needle introduced onto the outer annulus, mock electrode passage shown on monitor, generator noises produced	Not reported		
Kvarstein 2009	Ethics committee / NC	Percutaneous intradiscal radiofrequency thermocoagulation (PIRFT) / discogenic	17-gauge canula and RF-probe inserted into annulus, no RF current applied	Not re	eported	

3
4
5
5 6 7 8 9 10 11 12 13 14 15 16 7
7
0
0
9
10
11
10
12
13
14
15
16
47
17
18
19
20
21
∠ I 00
20 21 22 23 24 25 26 27 28 29 30
23
24
25
20
20
27
28
29
20
30
31
32
33
32 33 34 35 36 37 38
04
35
36
37
37 38 39
39
39
40
41
42 43
13
-T-J 4.4
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

60

	~	
1	()	
T	v.	

		low back pain			
Olanow 2003	Review Board /	Fetal nigral	Scalp incisions,	No	MAF
	NC	transplantation, 4 donors / Parkinson's disease	partial thickness burr holes, no cell transplantation, 6 months low-dose cyclosporine	mAE (rate/patient day: 0,66	mAE (rate/patie day: 0,39
Marks 2010	Review Board / C	Gene delivery of AAV2-Neurturin / Parkinson's disease	Scalp incisions, partial thickness burr holes, no intracranial injections	MAE: 4 Most frequent mAE: headache: 68%	MAE: 0 Most frequent mAE: headache: 50%
Gross 2011	Review Board / C	Transplantation of human retinal pigmental cells / Parkinson's disease	Scalp incisions, partial thickness burr holes, no cell transplantation	1 death MAE: 23%	0 deaths MAE: 0
LeWitt 2011	Review Board / C	Insertion of AAV- GAD gene into subthalamic nucleus / Parkinson's disease	Insertion of catheter caudal to nucleus, infusion of saline	No I mAE (probably related to procedure): 56%	MAE mAE (probably related to procedure 14%
Dowson 2008	Ethics committee / C	Patent foramen ovale closure with STARFlex Septal Repair Implant / migraine	General anesthesia, skin incision in the groin events; mAE=minor advo	MAE (possibly or probably related to procedure): 11%	MAE (possibly o probably related to procedure 4%

C=commercial; NC=non-commerical; MAE=major adverse events; mAE=minor adverse events; PMMA=polymethylmethacrylate; AAV2 =adeno-associated; GAD=glutamic acid decarboxylase

Fourteen trials from the systematic reviews fulfilled at least four of the five methodological criteria.^{33 34 37.48} Seven trials provided through searches in MEDLINE fulfilled the same criteria.^{35 36 49.53} The included and excluded secondary endpoints are shown in web appendix table 3. -All trials reported approval of study protocol prior to patient enrolment (table 1). Seven trials were commercially funded.^{38 39 47 50-53} Most of the trials had few participants, ranging from 20 to 346 (median 80).

Clinical outcomes after active treatment and sham

Twelve of the 21 trials showed a large ES on primary endpoints after active treatment, while 11 trials showed a similar ES after the sham procedure (figure ± 2 , table 2).

	Limit				
	disease				
	duration /			ES pooled	
	time to	Trial arm / no		secondary	
	follow-up	of patients		endpoints (n	no of
Author / procedure	(months)	randomised	endpoint	endpoints)	
Leon 2005 / Percutaneous			Exercise duration		
myocardial laser revascularization	None / 12			(10)	
	None / 12		(3)	(10)	
		Active / 98	0.23	0.60	
		Sham / 102	0.22	0.54	
ES active treatment vs sham			0.01		0.07
Salem 2004 / Percutaneous			Exercise duration		
myocardial laser revascularization	None / 12		(s)	-	
		Active / 40	0.04		
		Sham / 42	0.08		
ES active treatment vs sham			-0.04		
Sihvonen 2013 / Arthroscopic partial			Lysholm knee	(.	
meniscectomy	>3 / 12	(score	(4)	
		Active / 70	0.86	0.58	
		Sham / 76	1.03	0.58	
ES active treatment vs sham			-0.17		0.00
Moseley 2002 / Arthroscopic			Knee Specific Pain		
debridement	None / 12		Scale	(5)	
		Active / 59	0.54	0.11	
		Sham / 60	0.85	0.20	
ES active treatment vs sham			-0.31		-0.09
Pham 2004 / Hyaluronic acid			VAS Pain	(3)	
	None / 12	Active / 131	1.48	1.35	
		Sham / 85	1.54	1.30	
ES active treatment vs sham			-0.06		0.05
				Womac C	
Chevalier 2010 / Hyaluronic acid				womac C function	
	None / 6	Active / 124	1.52	1.13	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

			1 / / /	
-	Sham / 129	1.18	1.07	0.0
None / C				0.0
None / 6		womac pain	(2)	
	Active / 172	0.76	0.38	
	Sham / 174	0.85	0.53	
k.			-	0.1
<12/1		,	(7)	
		Questionnune	(*)	
	Active / 68	0.86	0,72	
			0.00	
	Sham / 63			
+		0.05		0.0
<12/6		Pain Score	(4)	
11270			(')	
	Active / 38	0.83	0.46	
	Sham / 40			
		0.12	-	0.0
<6 /1		NRS leg pain	(2)	
			(-)	
	Active / 28	1.51	0.88	
	ci (20		0.00	
_	Sham / 30			
-				0.4
>3/12			-	
	Active / 36	1.68		
_	Sham / 40	1		_
51<18/12			(2)	
/1/10/12			(2)	
	Active /120	1.42	1.14	
	Sham / 108	1.44		
<u> </u>		-0.02	-	0.0
	1			
<6/1		VAS Pain	(3)	
	None / 6 None / 6 <12 / 1 <12 / 1 <12 / 1	Active / 172 Active / 172 Sham / 174 Sham / 174 <12 / 1	None / 6 Womac pain Active / 172 0.76 Sham / 174 0.85 Image: Sham / 63 0.81 Image: Sham / 40 0.71 Image: Sham / 40 0.71 Image: Sham / 30 0.82 Image: Sham / 40 1.85 Image: Sham / 40 1.85 Image: Sham / 40 1.85 Image: Sham / 108 1.44	Active / 172 0.76 0.38 Sham / 174 0.85 0.53 Sham / 174 0.85 0.53 Roland-Morris Disability Questionnaire (7) Active / 68 0.86 0,72 Sham / 63 0.81 0.63 Sham / 63 0.81 0.63 0.85 0.05 <12 / 6

	I.	1		[
			1.85	
		Sham / 43	1.47	0.99
ES active treatment vs sham			0.38	0.1
Freeman 2005 / Intradiscal			Oswestry disability	
electrothermal therapy	≥3 / 6		index	(6)
		Active / 38	0.10	-0.03
		Sham / 19	- 0.07	0.12
ES active treatment vs sham			0.17	-0.1
Pauza 2003 / Intradiscal			Oswestry disability	
electrothermal therapy	>6 / 6		index	(3)
		Active / 32	0.94	0.90
		Sham / 24	0.35	0.46
ES active treatment vs sham			0.59	0.4
Kvarstein 2009 / Percutaneous				
intradiscal radiofrequency	/ 12		Brief Pain	(5)
thermocoagulation	>6 / 12		Inventory	(5)
		Active / 10	0.34	0.54
		Sham / 10	0.23	0.24
ES active treatment vs sham			0.11	0.3
Olanow 2003 / Fetal nigral				
transplantation	None / 24		UPDRS 3 off	(5)
		Active / 12	0.04	-0.24
		Sham / 11	- 0.44	-0.19
ES active treatment vs sham			0.48	
Marks 2010 / Gene delivery of AAV2- Neurturin	≥60 / 12		UPDRS 3 off	(7)
		Active / 38	0.72	0.23
		Sham / 20	0.53	-0.05
ES active treatment vs sham			0.19	
Gross 2011 / Transplantation of			0.15	
human retinal pigmental cells	≥60 / 12		UPDRS 3 off	(2)
		Active / 35	1.09	0.08
		Sham / 36	0.88	0.06
ES active treatment vs sham			0.21	0.0
LeWitt 2011 / AAV-GAD gene into	≥60 / 6		UPDRS 3 off	(7)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

60

subthalamic nucleus Active / 16 1.00 0.30 Sham / 21 0.42 0.21 ES active treatment vs sham 0.58 0.08 Frequency migraine/month Dowson 2008 / Patent foramen ovale Headache Impact closure None / 6 (per protocol) Test Active / 74 0.74 1.02 Sham / 73 0.45 1.06 ES active treatment vs sham 0.28 0.04

VAS=Visual Analogue Scale; NRS=Numerical Rating Scale; UPDRS=Unified Parkinson's Disease Rating Scale; Womac=Western Ontario and McMaster Universities Osteoarthritis Index

ES on primary endpoints was moderate in three of the active treatment groups and in two of the sham groups.

On pooled secondary endpoints, a large ES was estimated in seven trials after active treatment and in five trials after sham, while a moderate ES was reported in four and three trials respectively (table 2).

In none of the trials did the actively treated group show a deterioration of primary endpoint during treatment, while this was the case for two of the sham groups (not reported to be related to the procedure). On secondary endpoints, deterioration occurred in two active treatment and two sham groups (table 2).

Differences in outcome between active treatment and sham Better results on primary endpoints were reported with active treatment compared to sham in 14 of the 21 trials, but the differences were small. Three trials (one epidural study⁴³, one discogenic pain study⁴⁶ and one Parkinson study⁵²) reported a moderate effect but none showed a large effect (figure 23, table 2). Seven trials reported a better primary endpoint outcome after sham than after active treatment.

Nineteen trials reported secondary endpoints, 11 of these reported better outcome after active treatment than after sham, but in no case did the differences reach a moderate ES (figure 23, table 2). In twelve trials, the outcome was better for primary than for pooled secondary endpoints. This bore no relation to funding source.

On regression analyses, effect sizes in the sham groups predicted about 80 % of the variance of ES in the active treatment groups, both on primary and pooled secondary endpoints (figure 34 and 45).

Adverse events

Eighteen studies provided information about adverse events (AE) (table 1). Three of these trials reported no procedural adverse events in any of the groups.^{33 35 41} Major AEs were reported after active treatment in four trials^{34 50 51 53} including one death in one of the Parkinson studies.⁵¹ In the sham groups, one trial⁵³ listed three major AEs possibly or probably related to the procedure, all thought to be caused by antiplatelet medication, none of them life-threatening. Apart from this trial, there were no major AEs in the sham groups. The reported minor AEs were all of limited duration.

DISCUSSION

Principal findings

Analysis of 21 sham-controlled trials of minimally invasive procedures showed that the effect sizes in the active treatment arms were predicted by the effect sizes in the sham arms. There was a large ES on primary endpoints in about half of both the active and sham interventions, but none of the trials showed a large difference in ES between active treatment and sham groups either on primary or secondary endpoints.

The magnitude of the effect in each trial arm varied considerably, both between different procedures and between trials using the same procedure. For instance, in the active treatment groups, ES for primary endpoints varied from around zero to almost 2 after active treatment, and from about -0.4 to 1.5 after sham. Disparate outcomes were reported even between trials where technical parameters were similar. For instance, ES in the sham group in the three hyaluronic acid-trials varied by a factor of three, and in the epidural trials by a factor of two. This variability is probably related to differences in study design, duration of disability before inclusion, contextual factors, including the doctorpatient relationship as well as other factors. The close association between endpoints in the active treatment and sham groups on regression analyses suggests that a large part of the reported outcomes in the active treatment groups are due to placebo effects, statistical regression to the mean or the natural course of the condition.

Strengths and limitations of study

It is our opinion that the calculation of effect sizes in both active treatment and placebo arms is a strength of the present study. This made it possible to assess the magnitude of change in both arms and the contribution of non-specific factors to

change in the active treatment arms. The calculation of effect sizes provides an alternative assessment to probability estimates. Another strength of the study is the supplementary analyses of pooled secondary endpoints, enabling a more comprehensive evaluation than using primary endpoints alone. Reports of tactically motivated use of primary and secondary endpoints before publication in order to improve study results strengthen the argument for registering all relevant secondary endpoints.⁵⁴ Our finding that a majority of trials reported better results on primary than on secondary endpoints might lend support to such a hypothesis, although all trials, according to the authors, had sought and gained approval of the protocol from ethics committee and/ or review board (table 1).

The present review is limited to selected minimally invasive procedures in cardiology, neurology, and musculoskeletal conditions. While some procedures are, or have been, in wide clinical use, some are still in the clinical trial phase. Other sources of heterogeneity are variable duration of disease before inclusion, selection of outcome measures and time to follow-up. Results cannot be generalised to minimally invasive procedures in all medical disciplines, but a similar methodology could be applied to more systematic analyses of the role of non-specific effects in other minimally invasive procedures.

We applied principles from guidelines for conducting systematic reviews and meta-analyses and included an independent assessment of methodological trial quality by two of the authors. We cannot rule out that we have missed relevant trials because we limited our search to the Cochrane Library and MEDLINE, but most relevant trials are likely to have been identified by our searches. By preferentially selecting core journals and trials that had previously been methodologically evaluated in systematic reviews, it was our intention to reduce the risk of bias by excluding studies of low quality. We realize that this selection process and the fact that we relied on previous methodological evaluations may have contributed to unrecognised selection bias.

The use of ES as a measure of clinical effect assumes a normal distribution of the data. This does not necessarily apply in the included trials because the majority of them are small. Including trials reporting non-parametric data would however necessitate other methods of statistical analysis. Small studies increase the likelihood of type-2 errors, though this is more relevant to probability estimates than analysis of ES.

Adequate blinding and lack of physiological effects?

We cannot rule out that treatment-specific effects in the actively treated groups may have jeopardised blinding, leading to overestimation of treatment effects through positive

1 2 3

expectations. However, all the included trials gave a detailed description of the sham procedure, and both participant and assessor blinding seems to have been adequate.

On a more general level, it has been argued that sham procedures are not inert and may have specific physiological effects, thereby underestimating a treatment effect.⁵⁵ More recently, Bickett et al. hypothesised that epidural injection of small volumes of saline might have physiological effects.⁵⁶ However, it is to be noted that in the four selected epidural trials in the present study, improvements in the sham group were greater in the two trials using non-epidural saline than in those using epidural saline, making a physiological effect less likely. In our opinion, physiological effects of the sham interventions are also unlikely in the remaining procedures.

Surgery and other invasive procedures are commonly believed to be associated with enhanced placebo effects, a phenomenon coined mega-placebo.⁵⁷ In spite of their heterogeneous nature, the 21 selected trials share a medicotechnological context in which an a priori enhanced placebo response could be expected. If an ES >0.8 is considered as mega-placebo, half of the included sham interventions reached this level. Factors such as the level of enthusiasm and conviction conveyed by the therapist, the impression of advanced procedures and the extent to which these factors succeed in activating a placebo response are probably crucial in explaining the improvements after sham interventions and the correlation of endpoints in the active treatment and sham groups. Participants' perception of whether they received active treatment or sham has been shown to contribute more to clinical improvement than the biological effects per se.^{32 58}

Non-specific factors

The role of non-specific factors, primarily spontaneous remission or statistical regression-to-the-mean, in placebocontrolled studies is controversial.⁵⁹ A recent meta-analysis analysing 202 trials with an untreated group, spanning 60 different clinical conditions, found rather small differences between placebo and no treatment, with effect sizes in the range of 0.2 to 0.3.⁶⁰ Apart from acupuncture trials (mean ES 0.68), the authors did not include trials reporting the effectiveness of invasive procedures. Another meta-analysis studied the placebo effect of a range of treatments (pharmacological, non-pharmacological and surgical) for osteoarthritis of the hand, hip and knee.⁶¹ Of 198 included trials fourteen had a no-treatment arm. The mean ES in the placebo groups was about 0.5, while it was only slightly above zero in the no-treatment groups. The difference between the placebo and no-treatment groups was larger than the difference between the placebo and active treatment groups. Trials using injections, acupuncture and surgery had the largest 17

5 6

7

8

9

10 11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27 28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47 48

49

50

51

52

53

54

placebo effects, and the effects were larger for subjective than objective endpoints. The authors concluded that there is a significant placebo effect on pain, stiffness and function in symptomatic osteoarthritis.

Because the trials in the present study did not include a notreatment arm (i.e. waiting list), we cannot rule out that the changes appearing during the trial period also reflect nonspecific factors, i.e. spontaneous improvement or regression to the mean. Such mechanisms would be expected to be most prominent in trials with brief illness duration before inclusion and with longer time to follow-up, while improvements in chronic, unremitting conditions such as Parkinson's disease would be more likely attributed to placebo. Interestingly, in three of the four included Parkinson trials, there were moderate to large improvements in the sham groups even at one-year follow-up.⁴⁹⁻⁵¹ Other authors have also found improvements several years after sham surgery, indistinguishable from conventional surgery.^{32 62} This is in agreement with recent insights into the neurobiological effects of placebo and their relation to underlying psychological mechanisms, principally expectation and conditioning.63

Are ethical objections to sham justified?

The use of sham in controlled surgical trials is a divisive issue, with scepticism, even frank opposition, being voiced by both ethics committees, involved surgeons and anaesthetists, and potential patients.⁶⁴ Ethical arguments include the inherent risks of sham procedures combined with the lack of obvious benefits to the participants. Barriers related primarily to feasibility include problems with patient and assessor blinding, differing technical expertise, the heterogeneity of the interventional techniques and variable outcome specifications, making standardization difficult to achieve. Existing ethical guidelines accept the role of placebo-controlled trials when certain conditions are met.⁶⁵ There must be genuine equipoise, i.e. conflicting or weak evidence of the effectiveness of a procedure. Blinding of both participants and assessors must be assured, and participants must freely consent to suspend knowledge of whether they are receiving sham or conventional treatment. The health risks and consequences of placebo or delayed treatment must be minimal, and outweighed by the societal importance of establishing the clinical utility of the intervention in question.66 67

The selected trials gave a detailed description of adverse events in both active and sham-treated groups (table 1). The safety concerns frequently raised as an argument against the use of sham were generally not supported. Major adverse events related to the sham procedure were reported in only one of the trials⁵³ and they were short-lived and not life threatening. Minor adverse events were more frequent, but

also of limited duration. Positive placebo-induced effects generally outweighed adverse events, thus weakening ethical arguments against the use of sham interventions. In our opinion, the consequences of the continued use of unproven invasive procedures are of a different magnitude. In the light of studies supporting the beneficial effects of sham procedures, at least for pain and Parkinson symptoms, research ethics committees should consider such factors in their risk-benefit assessments of planned sham controlled trials.^{68 69}

Clinical implications.

The present results are pertinent to the ongoing discussion about wasteful and unproven medical practices, and underscore the necessity for a continual assessment of existing or novel unproven procedures. Minimally invasive techniques have lowered the threshold for interventions, and led to their application to a wider clinical spectrum (indication creep) without an ongoing evaluation of effectiveness or safety.⁴ The last two decades have seen dramatic increases in the use of several of the described procedures, as well as interventions we have not investigated, such as acromioplasty, percutaneous coronary intervention and, more recently, robotic surgery.⁷⁰⁻⁷⁵ In light of the results in the present study, placebo effects might well explain a large part of the purported effects of such procedures. When clinicians and regulators are faced with claims of large treatment effects for insufficiently tested procedures, their default mode should be watchful scepticism. The standards of the evaluation process before approval and < reimbursement of devices and procedures need to be strengthened, and economic or regulatory incentives that perpetuate the use of undocumented or harmful procedures should be abrogated.

CONCLUSION

Sham-controlled trials are unique in their ability to discriminate between true treatment effects and non-specific effects. The results of the present study suggest that placebo and other non-specific effects explain a large part of their purported benefits. Further, results indicate that the risks of adverse events in sham-controlled trials are overrated and could be considered acceptable in view of the potential personal harm and societal costs associated with unproven minimally invasive interventions.

Figure legends

Figure 1. Flow chart of study selection in the present metaanalysis.

Figure 2. Effect sizes of active treatment and sham, primary endpoints.

Figure $\frac{23}{2}$. Differences in effect size between active treatment and sham.

Figure <u>34</u>. Association between effect sizes of primary endpoints in active treatment and sham arms. Linear regression, 95% confidence intervals. N=21.

Figure 4<u>5</u>. Association between effect sizes of pooled secondary endpoints in active treatment and sham arms. Linear regression, 95% confidence intervals. N=19.

References

- Prasad V, Vandross A, Toomey C et al. A decade of reversal: an analysis of 146 contradicted medical practices. *Mayo Clin Proc* 2013;88:790-8.
- Tiago V. Pereira TV, Horwitz RI et al. Empirical Evaluation of Very Large Treatment Effects of Medical Interventions. JAMA 2012;308:1676-84.
- Roberts AL, Kewman DG, Mercier L et al. The power of nonspecific effects in healing: implications for psychosocial and biological treatments. *Clin Psychol Rev* 1993;13:375-91.
- Garner S, Littlejohns P. Disinvestment from low value clinical interventions: NICEly done? BMJ 2011;**343**:d4519.
- Scott IA, Elshaug AG. Foregoing low-value care: how much evidence is needed to change beliefs? *Intern Med J* 2013;43:107-9.
- Obremskey WT, Pappas N, Attallah-Wasif E et al. Level of evidence in orthopaedic journals. *J Bone Joint Surg Am* 2005;87:2632-8.

 Wenner DM, Brody BA, Jarman AF et al. Do surgical trials meet the scientific standards for clinical trials? *J Am Coll Surg* 2012;215:722-30.
 Ezekiel JE, Miller FG. The Ethics of Placebo-Controlled Trials — A Middle Ground. *N Engl J Med* 2001;345:915-9.
 Campbell MK, Entwistle VA, Cuthbertson BH et al. Developing a placebo-controlled trial in surgery: issues of design, acceptability and feasibility. *Trials* 2011;12:50
 Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1.0. <u>http://handbook.cochrane.org</u>; (11.11.2014)
 Liberati A, Altman DG, Tetzlaff J et al. The PRISMA

7. Reeves B. Health-technology assessment in surgery.

Lancet 1999;353:Suppl 1:S13-S15;

statement for reporting systematic reviews and metaanalyses of studies that evaluate healthcare interventions: explanation and elaboration. *BMJ* 2009;**339**:b2700.

- Cohen J. Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Lawrence Erlbaum Associates, 1988.
- 14. Durlak JA. How to Select, Calculate, and Interpret Effect Sizes. *J Pediatr Psychol* 2009; **34**: 917-28.

BMJ Open

22	
<u>15.</u> MedCalc Software bvba, Ostend, Belgium;	
http://www.medcalc.org; (08.03.2014).	
16. Nath S, Nath CA, Pettersson K et al. Percutaneous	
lumbar zygapophysial (Facet) joint neurotomy using	
radiofrequency current, in the management of chronic	
low back pain: a randomized double-blind trial. Spine	
2008;33:1291-7.	
17. Patel N, Gross A, Brown L et al. A randomized, placebo-	
controlled study to assess the efficacy of lateral branch	
neurotomy for chronic sacroiliac joint pain. Pain Med	
2012;13:383-398.	
18. Cohen SP, Hurley RW, Buckenmaier CC et al.	
Randomized placebo-controlled study evaluating	
lateral branch radiofrequency denervation for	
sacroiliac joint pain. Anesthesiology 2008;109:279-88.	
19. Tekin I, Mirzai H, Ok G et al. A comparison of	
conventional and pulsed radiofrequency denervation	
in the treatment of chronic facet joint pain. Clin J	
Pain 2007; 23 :524-9.	
Pain 2007;23:524-9. 20. Leclaire R, Fortin L, Lambert R et al. Radiofrequency facet joint denervation in the treatment of low back	
facet joint denervation in the treatment of low back	
pain: a placebo-controlled clinical trial to assess	
efficacy. Spine 2001; 26 :1411-6.	
21. van Wijk RM, Geurts JW, Wynne HJ et al.	
Radiofrequency denervation of lumbar facet joints in	
the treatment of chronic low back pain: a randomized,	

1

1	
2	
$\begin{smallmatrix} 2 & 3 & 4 & 5 & 6 \\ 7 & 8 & 9 & 10 & 112 & 134 & 1516 & 1718 & 1902 & 1222 & 2242 & 2262 & 2293 & 3123 & 3343 & 3563 & 3783 & 3912 & 3343 & 3563 & 3783 & 3912 & 3343 & 3563 & 3783 & 3912 & 3343 & 3563 & 3783 & 3912 & 3343 & 3563 & 3783 & 3912 & 3343 & 3563 & 3783 & 3912 & 3343 & 3563 & 3783 & 3912 & 3343 & 3563 & 3783 & 3912 & 3343 & 3563 & 3783 & 3912 & 3783 $	
5	
6	
7	
8	
9	
10	
12	
13	
14	
15	
16	
17	
19	
20	
21	
22	
23	
24	
25 26	
27	
28	
29	
30	
31	
32	
33 34	
35	
36	
37	
38	
40 41	
42	
43	
44	
45	
46	
47 48	
40 49	
50	
51	
52 53 54	
53	
54 55	
ວວ 56	
57	
58	
59	
60	

double-blind, sham lesion-controlled trial. Clin J Pain 2005 ;21:335-44. 16.22 Rutjes AWS, Jünl P, da Costa BR et al. Viscosupplementation for Osteoarthritis of the Knee. A Systematic Review and Meta-analysis. Ann Intern Med 2012;157:180-91. Pinto RZ, Maher CG, Ferreira ML et al. 17.23 Epidural corticosteroid injections in the management of sciatica: a systematic review and meta-analysis. Ann Intern Med 2012;157:865-77. 18.24. McGillion M, Cook A, Victor JC et al. Effectiveness of percutaneous laser revascularization therapy for refractory angina. Vasc Health Risk Manag 2010;6:735-47. 19.25 Helm S II, Deer TR, Manchikanti L et al. Effectiveness of thermal annular procedures in treating discogenic low back pain. Pain Physician 2012; 15:E279-E304. 20.26Shi MM, Cai XZ, Lin T et al. Is there really no benefit of_vertebroplasty_for osteoporotic vertebral fractures? A meta-analysis. Clin Orthop Relat Res 2012;470:2785-99. 21.27. Petrella RJ, Cogliano A, Decaria J. Combining two hyaluronic acids in osteoarthritis of the

knee: a randomized, double-blind, placebo-controlled

trial. Clin Rheumatol 2008;27:975-81.

BMJ Open

22.28. Lundsgaard C, Dufour N, Fallentin E et al.
Intra-articular sodium hyaluronate 2 mL versus
physiological saline 20 mL versus physiological saline 2
mL for painful knee osteoarthritis: a randomized
clinical trial. Scand J Rheumatol 2008 ;37:142-50.
23.29. Karppinen J, Malmivaara A, Kurunlahti M et
al. Periradicular infiltration for sciatica: a randomized
controlled trial. <i>Spine</i> 2001; 26 :1059-67.
24. <u>30.</u> Freed CR, Greene PE, Breeze RE et
al. Transplantation of embryonic dopamine neurons for
severe Parkinson's disease. N Engl J Med
2001; 344 :710-9.
25.31. Gordon PH, Yu Q, Qualls C et al. Reaction
time and movement time after embryonic cell
implantation in Parkinson disease. Arch Neurol
2004; 61 :858-61.
26.32. McRae C, Cherin E, Yamazaki TG et al.
Effects of perceived treatment on quality of life and
medical outcomes in a double-blind placebo surgery
trial. Arch Gen Psychiatry 2004; 61 : 412-20.
medical outcomes in a double-blind placebo surgery trial. <i>Arch Gen Psychiatry</i> 2004; 61 : 412-20. 27.33. Salem M, Rotevatn S, Stavnes S et al.
Usefulness and safety of percutaneous myocardial
laser revascularization for refractory angina pectoris.
Am J Cardiol 2004; 93 :1086-91.
28.34. Leon MB, Kornowski R, Downey WE et al. A
blinded, randomized, placebo-controlled trial of

percutaneous laser myocardial revascularization to improve angina symptoms in patients with severe coronary disease. *J Am Coll Cardiol* 2005;46:1812-9.
29.35. Moseley JB, O'Malley K, Petersen NJ et al. A controlled trial of arthroscopic surgery for osteoarthritis of the knee. *N Engl J Med* 2002;347:81-8.
30.36. Sihvonen R, Paavola M, Malmivaara A et al. Arthroscopic partial meniscectomy versus sham surgery for a degenerative meniscal tear. *N Engl J Med* 2013;369:2515-24.
31.37. Pham T, Le Henanff A, Ravaud P et al.

Evaluation of the symptomatic and structural efficacy of a new_hyaluronic_acid compound, NRD101, in comparison with diacerein and placebo in a 1 year randomised controlled study in symptomatic knee osteoarthritis. *Ann Rheum Dis* 2004;**63**:1611-7.

<u>32.38.</u> Altman RD, Akermark C, Beaulieu AD et al. Efficacy and safety of a single intra-articular injection of non-animal stabilized_hyaluronic_acid (NASHA) in patients with osteoarthritis of the knee. *Osteoarthritis Cartilage* 2004;**12**:642-9.

33.39. Chevalier X, Jerosch J, Goupille P et al. Single, intra-articular treatment with 6 ml hylan G-F 20 in patients with symptomatic primary osteoarthritis of the knee: a randomised, multicentre, double-blind, placebo controlled trial. Ann Rheum Dis 2010;69:113-9. , ,

	2
	34.40. Kallmes DF, Comstock BA, Heagerty PJ et
	al. A randomized trial of vertebroplasty for
	osteoporotic spinal fractures. N Engl J Med
	2009; 361 :569-79.
	35.41. Buchbinder R, Osborne RH, Ebeling PR et
Ι	al. A randomized trial of vertebroplasty for painful
	osteoporotic vertebral fractures. N Engl J Med
	2009; 361 :557-68.
	36.42. Iversen T, Solberg TK, Romner B et al.
	Effect of caudal epidural steroid or saline injection in
	chronic lumbar radiculopathy: multicentre, blinded,
	randomised controlled trial. BMJ 2011; 343 :d5278.
	37.<u>43.</u> Cohen SP, White RL, Kurihara C et al.
	Epidural steroids, etanercept, or saline in subacute
	sciatica: a multicenter, randomized trial. Ann Intern
	Med 2012; 156 :551-9.
	38.44. Arden NK, Price C, Reading I et al. A
I	multicentre randomized controlled trial
	of_epidural_corticosteroid injections for sciatica: the
	WEST study. <i>Rheumatology</i> 2005; 44 :1399-406.
	of_epidural_corticosteroid injections for sciatica: the WEST study. <i>Rheumatology</i> 2005; 44 :1399-406. <u>39:45.</u> Valat JP, Giraudeau B, Rozenberg S et
I	al.Epidural corticosteroid injections for sciatica: a
	randomised, double blind, controlled clinical trial. Ann
	Rheum Dis 2003; 62 :639-43.
	40.46. Pauza KJ, Howell S, Dreyfuss P et al. A
I	randomized, placebo-controlled trial of intradiscal

electrothermal therapy for the treatment of discogenic low back pain. *Spine* J 2004;**4**:27-35.

41.<u>47.</u> Freeman BJ, Fraser RD, Cain CM et al. A randomized, double-blind, controlled trial: intradiscal electrothermal therapy versus placebo for the treatment of chronic discogenic low back pain. *Spine* 2005;**30**:2369-77.

42.<u>48.</u> Kvarstein G, Måwe L, Indahl A et al. A randomized double-blind controlled trial of intraannular radiofrequency thermal disc therapy--a 12month follow-up. *Pain* 2009;**145**:279-86.

43.<u>49.</u>Olanow CW, Goetz CG, Kordower JH et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson's disease. *Ann Neurol* 2003;**54**:403-14.

44.<u>50.</u> Marks WJ Jr, Bartus RT, Siffert J et al. Gene delivery of AAV2-neurturin for Parkinson's disease: a double-blind, randomised, controlled trial. *Lancet Neurol* 2010;**9**:1164-72.

45.<u>51.</u> Gross RE, Watts RL, Hauser RA et al. Intrastriatal transplantation of microcarrier-bound human retinal pigment epithelial cells versus sham surgery in patients with advanced Parkinson's disease: a double-blind, randomised, controlled trial. *Lancet Neurol* 2011;**10**:509-19. 0,

BMJ Open

2	
3	
4	
3 4 5	
6	
7	
י ס	
8	
9	
9 10 11 12 13 14 15 16 17 18 9 21 22 23 24 25 26 27 8 9 31 32 33 45 67 89 31 32 33 34 56 78 9 39	
11	
12	
13	
14	
14	
15	
16	
17	
18	
19	
20	
21	
∠ I 00	
22	
23	
24	
25	
26	
20	
21	
28	
29	
30	
31	
32	
22	
33	
34	
35	
36	
37	
38	
30	
40	
40	
41	
42	
43	
44	
45	
16	
46 47	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

46.52 LeWitt PA, Rezai AR, Leehey MA et al. AAV2-GAD gene therapy for advanced Parkinson's disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol 2011;10:309-19. 47.53 Dowson A, Mullen MJ, Peatfield R et al. Migraine Intervention With STARFlex Technology (MIST) trial: a prospective, multicenter, double-blind, sham-controlled trial to evaluate the effectiveness of patent foramen ovale closure with STARFlex septal repair implant to resolve refractory migraine headache. Circulation 2008;117:1397-404. Hannink G, Gooszen HG, Rovers MM. 48.54 Comparison of registered and published primary outcomes in randomized clinical trials of surgical interventions. Ann Surg 2013;257:818-23. Birch S. A review and analysis of placebo treatments, placebo effects, and placebo controls in trials of medical procedures when sham is not inert. J Altern Complement Med 2006;12:303-10. Bicket MC, Gupta A, Brown CH 4th et al. 50.56

Epidural_injections for spinal pain: a systematic review and meta-analysis evaluating the "control" injections in randomized controlled trials.

Anesthesiology. 2013;119:907-31.

1

2	
3	
4	
5	
5	
4 5 6	
7	
8	
õ	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
10	
18	
19	
20	
21	
21	
$\begin{array}{c} 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 1\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 9\\ 39\\ 39\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30$	
23	
24	
25	
20	
20	
27	
28	
29	
20	
30	
31	
32	
33	
24	
34	
35	
36	
37	
201	
30	
39	
40	
41	
42	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1

51.57 Kaptchuk TJ, Goldman P, Stone DA et al. Do medical devices have enhanced placebo effects? J Clin *Epidemiol* 2000;**53**:786-92. 52.58. _Einvik G, Tjomsland O, Kvernebo K et al. Preoperative expectations and clinical outcome of transmyocardial laser treatment in patients with angina pectoris. Tidsskr Nor Laegeforen 2002;122:2102-4. 53.59. Turner JA, Deyo RA, Loeser JD et al. The importance of placebo effects in pain treatment and research. JAMA 1994;271:1609-14. 54.60. _Hróbjartsson A, Gøtzsche PC. Placebo interventions for all clinical conditions. Cochrane Database Syst Rev 2010; CD003974. Zhang W, Robertson J, Jones AC et al. The placebo effect and its determinants in osteoarthritis: meta-analysis of randomised controlled trials. Ann Rheum Dis 2008;67:1716-23. Marchand S, Kupers RC, Bushnell MC et al. 56.62 Analgesic and placebo effects of thalamic stimulation. Pain 2003;105:481-8. 57.63. _Finniss DG, Kaptchuk TJ, Miller F et al. Biological, clinical, and ethical advances of placebo effects. Lancet 2010;375:686-95. Campbell MK, Entwistle VA, Cuthbertson 58.64. BH et al. Developing a placebo-controlled trial in

BMJ Open

1		
2		
3		
4	30	
5	50	
6		
7	surgery: issues of design, acceptability and feasibility.	
8	<i>Trials</i> 2011; 12 :50. doi: 10.1186/1745-6215-12-50.	
9	mus 2011, 12 . 30. 401. 10.1100/1743 0213 12 30.	
10	59.65. Snyder L. Review of the American College	
11		
12 13	of Physicians Ethics Manual, Sixth Edition. Ann Intern	
14	Adad 2012.4FC/4 Data 21.72 104	
15	Med 2012; 156 (1_Part_2):73-104.	
16	60. <u>66.</u> Flum DR. Interpreting surgical trials with	
17		
18	subjective outcomes: avoiding UnSPORTsmanlike	
19		
20	conduct. <i>JAMA</i> 2006; 296 :2483-5.	
21	61.67. Heckerling PS. Placebo surgery research: a	
22	Teckening ro. Placebo sulgery research. a	
23 24	blinding imperative. J Clin Epidemiol 2006;59:876-80.	
25		
26	62.68. Brim RL, Miller FG. The potential benefit of	
27		
28	the placebo effect in sham-controlled trials:	
29	implications for risk-benefit assessments and informed	
30		
31	consent. J Med Ethics 2013;39:703-7.	
32		
33	63.69. Redberg RF. Sham controls in medical	
34 35	device trials. <u>N Engl J Med</u> 2014; 371 :892-3.	
36	device thats. <u>N Lingt 5 liveu</u> 2014, 57 1 .852-5.	
37	64.70. Haahr JP, Østergaard S, Dalsgaard J et al.	
38		
39	Exercises versus arthroscopic decompression in	
40		
41	patients with subacromial impingement: a	
42	randomised, controlled study in 90 cases with a one	
43	patients with subacromial impingement: a randomised, controlled study in 90 cases with a one year follow up. <i>Ann Rheum Dis</i> 2005; 64 :760-4.	
44 45	year follow up. Ann Rheum Dis 2005; 64 :760-4.	
46		
40	65.71. Ketola S, Lehtinen J, Rousi T et al. No	
48	evidence of long-term benefits of arthroscopic	
49	באמבווכב טו וטווב-נבווו שבוופוונג טו מו נוווטגנטטוג	
50	acromioplasty in the treatment of shoulder	
51		
52	impingement syndrome: Five-year results of a	
53		
54		
55		

randomised controlled trial. Bone Joint Res

2013;**2**:132-9.

 Herrlin S, Hållander M, Wange P et al.
 Arthroscopic or conservative treatment of degenerative medial meniscal tears: a prospective randomised trial. *Knee Surg Sports Traumatol Arthrosc* 2007;15:393-401.

67.73. Yu E, Cil A, Harmsen WS et al. Arthroscopy and the dramatic increase in frequency of anterior acromioplasty from 1980 to 2005: an epidemiologic study. *Arthroscopy* 2010;**26**,Supplement:S142-7.

68.74. Vitale MA, Arons RR, Hurwitz S et al. The

rising incidence of acromioplasty. J Bone Joint Surg Am

2010;**92**:1842-50.

69.75. Brox JI, Staff PH, Ljunggren AE et al.

Arthroscopic surgery compared with supervised exercises in patients with rotator cuff disease (stage II

impingement syndrome). BMJ 1993;**307**:899-903.

Contributors: RH initiated and planned the project and searched databases. JIB and OT assisted in developing search strategies. Article screening and data extraction was carried out by RH. Quality of data extraction and checking was carried out by JIB and OT. Statistical analysis was undertaken by RH, who also wrote the draft. OT and JIB reviewed the draft and contributed to manuscript revisions. RH is the guarantor for this study.

Funding sources: None.

All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf and declare: no support from any organisation for the submitted work; no financial relationships with any organisations that might have an interest in the submitted work in the previous three years; no other relationships or activities that could appear to have influenced the submitted work.

Ethical approval: Ethical approval was not required for this work.

Data sharing: Dataset can be obtained from Robin Holtedahl (robi-hol@online.no).

The lead author affirms that this manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant, registered) have been explained.

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is noncommercial.

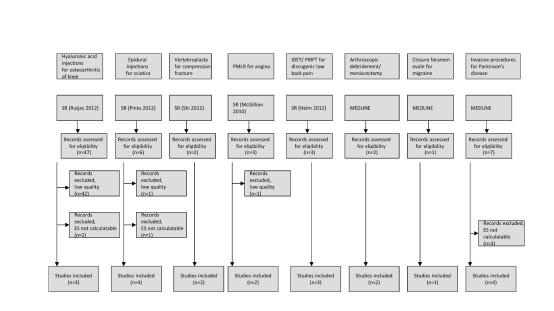


Figure 1 Flow chart of study selection in the present meta-analysis. SR = systematic review $254x190mm (300 \times 300 \text{ DPI})$

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

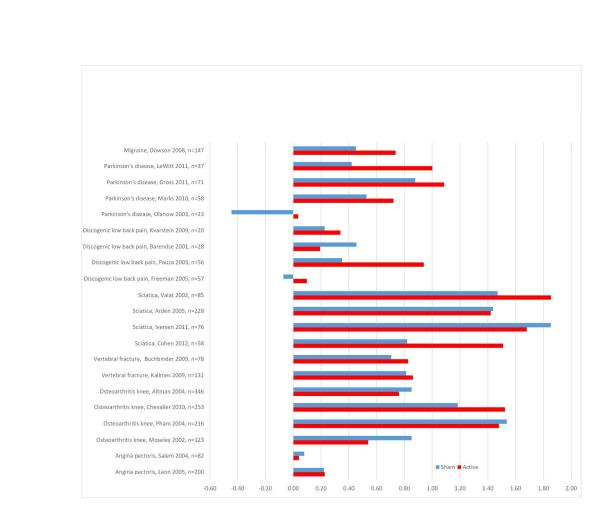
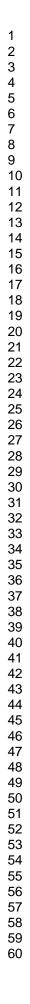



Figure 2 Effect sizes of active treatment and sham, primary endpoints. 250x216mm (300 x 300 DPI)

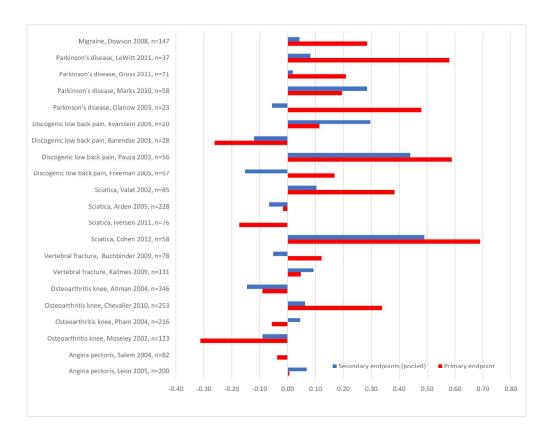


Figure 3 Differences in effect size between active treatment and sham. 221x173mm (300 x 300 DPI)

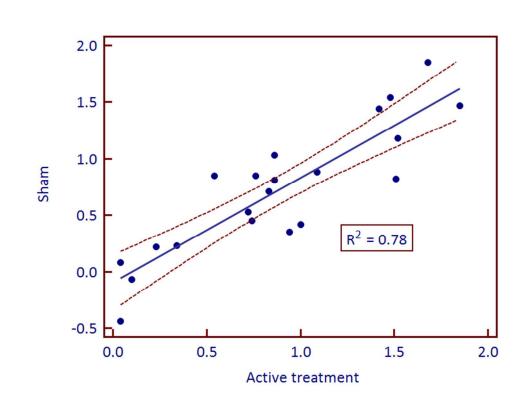
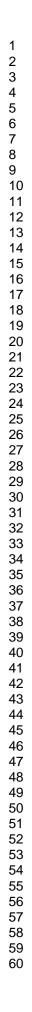



Figure 4 Association between effect sizes of primary endpoints in active treatment and sham arms. Linear regression, 95% confidence intervals. N=21. 67x50mm (300 x 300 DPI)

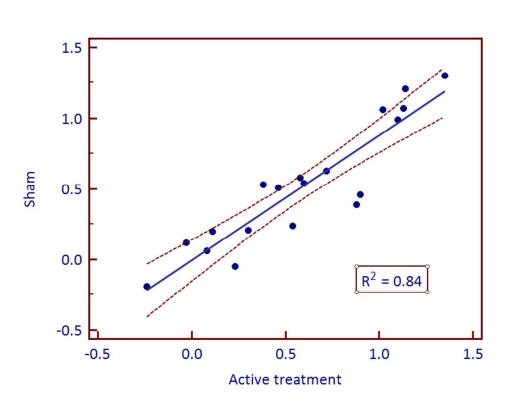


Figure 5. Association between effect sizes of pooled secondary endpoints in active treatment and sham arms. Linear regression, 95% confidence intervals. N=19. 67x50mm (300 x 300 DPI)

 Appendix table 1. Indications, postulated mechanisms and history of selected interventions

Invasive procedure / indication	Postulated mechanism	History	References
Percutaneous myocardial laser revascularization / intractable angina pectoris	Increasing the delivery of oxygenated blood to poorly perfused myocardium by creating channels	Introduced in the 1980s, initially transmyocardial route, later percutaneous route, now mostly abandoned	Schofield PM, McNab D. NICE evaluation of transmyocardial laser revascularisation and percutaneous laser revascularisation for refractory angina. <i>Heart</i> 2010;96:312-3.
Patent foramen ovale closure with STARFlex Septal Repair Implant / migraine	Improvement of migraine headache, believed to block the formation of microembolies to the brain	Developed in the 1990s for the prevention of stroke, later thought to cure migraine, never in clinical use for this indication	Gornall J. A very public break-up. <i>BMJ</i> 2010;340:c110
Arthroscopic debridement / Knee osteoarthritis	Unclear, no documented effect on arthritic process, but about 50% report relief of pain (Mosely)	Annually about 650.000 procedures in the USA in the mid-ninetees, but 39% decrease between 2000 and 2008.	Holmes R, Moschetti W, Martin B, Tomek I, Finlayson S. Effect of evidence and changes in reimbursement on the rate of arthroscopy for osteoarthritis. <i>Am J</i> <i>Sports</i> Med 2013:41:1030.43
Arthroscopic meniscectomy / degenerative meniscal lesions	Unclear, relief of symptoms attributed to trimming damaged meniscus down to viable meniscus and removing fragments.	The most common orthopedic procedure in the United States, 700.000 per year, up 50% last 15 years	Med 2013;41:1039-43. Kim S, Bosque J, Meehan JP, Jamali A, Marder R. Increase in outpatient knee arthroscopy in the United States: a comparison of National Surveys of Ambulatory Surgery, 1996 and 2006. <i>J Bone Joint Surg</i> <i>Am</i> 2011;93:994-1000.
Viscosupplementation with hyaluronic acid / Knee osteoarthritis	Improve joint lubrication by increasing HA levels in joint, in spite of short half-lives (Marshall 2000)	Many positive reports since late 1980s, including sham- controlled trials. Still widely in use	Rutjes 2012 (15)
Percutaneous vertebroplasty with PMMA cement injection / vertebral compression fracture	Increase the strength of the damaged bone and alleviate pain by preventing microfractures	Numerous observational studies and single-blind trials reported substantial clinical benefits. Slight reduction of procedure since 2009	Manchikanti L, Pampati V, Hirsch JA. Analysis of utilization patterns of vertebroplasty and kyphoplasty in the Medicare population. J Neurointerv Surg 2013;5:467-72.
Epidural injection of corticosteroids / Sciatica	Dampen inflammatory reaction in nerve root sheaths caused by mechanical compression	Routinely used for sciatica since the 1950s (Pinto 2012). Since 2000 the number of injections increased by about 130% in the United States and 50% in the United Kingdom	Manchikanti L, Falco FJ, Singh V, Pampati V, Parr AT, Benyamin RM, Fellows B, Hirsch JA. Utilization of interventional techniques in managing chronic pain in the Medicare population: analysis of growth patterns from 2000 to 2011. <i>Pain</i> <i>Physician</i> 2012;15:E969- 82

3

4

5

6

7

8

9

10 11 12

13

14

15

16

17

18

19

20 21

22

23

24

Percutaneous intradiscal Placement of a electrode or Introduced in 1996 (IDET), Helm 2012 (18) radiofrequency and RF-probe into the annulus later mostly abandoned thermocoagulation and applying heat or current (PIRFT and IDET) / to destruct nociceptors/ discogenic low back annulus pain Fetal nigral transplantation / Parkinson's disease Gene delivery of AAV2-Neurturin / Parkinson's disease Restoration of dopamin Based on animal models and levels in basal ganglia a few small observational through injection of growth trials from about 2000. None Transplantation of factors, GAD gene or nigral drs, jamine neu. in routine clinical use due to human retinal pigmental dopamine neurons insufficient evidence cells / Parkinson's disease Insertion of AAV-GAD gene into subthalamic nucleus / Parkinson's disease

Procedure	Search phrase MEDLINE	Source	Eligible studies	Excluded, ES not calculatable	Excluded, risk of bias	Included studies
PMLR	Percutaneous myocardial laser revascularization		3	-	1	Salem 2004 Leon 2005
PIRFT /IDET	Intradiscal OR annular AND	Helm 2012 (18)	3	-	-	Kvarstein, 2009
	thermal AND "low back pain"			-	-	Freeman 2005, Pauza 2003
Epidural injection corticosteroids	Epidural AND corticosteroid* AND sciatica	Pinto 2012 (16)	6	Karppinen 2001	1	lversen 201 Valat 2002, Arden 2005 Cohen 2012
Intraarticular hyaluronic acid for osteoarthritis knee	Hyaluron* OR viscosuppl* AND knee AND osteoarthritis	Rutjes 2012 (15)	48	Lundsgaard 2008, Petrella 2008	41	Petrella 2006, Chevalier 2010, Altma 2004, Pham 2004
Vertebroplasty	vertebroplast*	Shi 2012 (19)	2	-	-	Kallmes 2009, Buchbinder 2009
Invasive treatment of Parkinson's disease	transplantation OR gene OR "stem cell" AND Parkinson*	MEDLINE		Freed 2001, Gordon 2004, McRae 2004	-	Marks 2010 Olanow 2003, Gross 2011, LeWit 2011
Arthroscopic debridement knee osteoarthritis	debridement AND lavage AND knee AND osteoarthr*	MEDLINE		2	-	Moseley 2002
Meniscectomy knee	meniscectomy AND knee	MEDLINE	1			Sihvonen 2013
Foramen ovale closure for migraine	"foramen ovale" AND migraine	MEDLINE	1	-	-	Dowson 200
Number of trials			71	6	43	22

Author	Included secondary endpoints	Excluded secondary endpoints (means not reported, or irrelevant)		
Leon 2005				
	Time to onset angina	Improvement in angina class		
	Time to onset ST depression			
	Overall health	Radioisotope imaging		
	Frequency angina Stability angina			
	Physical functioning			
	Disease perception			
	Treatment satisfaction			
	PCS			
	MCS			
Salem 2004				
		Proportion improved CCS angina class		
		Medication usage		
		Seattle Angina Questionnaire		
		Left EF		
		Angina stability		
		Angina frequency		
		Physical limitation		
		Treatment satisfactioin		
		Disease perception		
Sihvonen 2013	WOMET score	_		
	Knee pain at rest			
	Knee pain after exercise			
	15D score			
Moseley 2002				
	Arthritis Impact Scale			
	Physical functioning Scale			
	Walking-bending			
	SF-36 Pain			
	SF-36 Physical functioning			
Pham 2004				
	Lequesne's algofunctional index	-		
	Global assessment			
	% painful days			
Chevalier 2010				
	Womac C function	-		
Altman 2004				
	Womac stiffness	-		
	Womac physical			
Kallmes 2009				

1 2 3 4 5 6 7 8 9	
$\begin{array}{c} 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 4\\ 35\\ 36\\ 37\\ 38\end{array}$	
20 21 22 23 24 25 26 27 28 20	
29 30 31 32 33 34 35 36 37 38	
39 40 41 42 43 44 45 46 47	
48 49 50 51 52 53 54 55 56 57	
58 59 60	

	SF-36 PCS	
	SF-36 MCS	
	Pain Frequency Index	
	Pain Bothersomeness Index	
	EQ-SD Index	
	SOF-ADL	
Buchbinder 2009		
	Roland-Morris Disability Questionnaire	-
	Life Questionnaire of the European Foundation	
	European Quality of Life–5 Dimensions	
Cohen 2012		
	Oswestry Disability Index	-
	Back pain	
Arden 2005	·	
	Leg pain	Analgesic use
	Back pain	
Valat 2002		
	Roland-Morris Disability Questionnaire	Dallas Pain Questionnaire
	Straight leg raising	
	Schober's test	
lversen 2011		
		VAS back and leg pain, European Quality of Life scale
Freeman 2005		
	Modifiede Somatic Perception Questionnaire	SF-36 Mental, Role Physical/ Mental, Social Function
	Low Back Pain Outcome Score	
	SF-36 Physical Function	
	SF-36 Pain	
	SF-36 General Health	
	SF-36 Vitality	
Pauza 2003		
	VAS Pain	-
	SF-36 Physical Function	
	SF-36 Pain	
Kvarstein 2009		
	SF-36 Bodily pain	SF-36 Mental, Role Physical/ Mental, Social
	SF-36 Physical function	– Function
	Oswestry Disability Index	
	SF-36 General health	
	SF-36 Vitality	
Olanow 2003		
	UPDRS motor on	Mean L-dopa dose equivalents
	UPDRS ADL off	
	UPDRS ADL on	

	% Off time day	
	% On time without dyskinesia	
Marks 2010		
	UPDRS OFF 1	Mean L-dopa dose equivalents
	UPDRS OFF 2	
	UPDRS ON 1	
	UPDRS ON 2	
	UPDRS ON 3	
	On without dyskinesia	
	On with dyskinesia	
Gross 2011		
	UPDRS ON	Mean L-dopa dose equivalents
	UPDRS ADL	
_eWitt 2011		
	UPDRS 1	Timed walking
	UPDRS2	BPRS other than taps
	UPDRS4	Dyskinesia rating scale
	Schwab and England ADL scale	Patient's diary
	BPRS taps 60 s	Clinical global impression
	Hoehan and Yahr stage	
	PDQ-39 total	
Dowson 2008		
	Headache Impact Test	-

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT	<u> </u>		
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	4
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	4
METHODS			
Protocol and registration 5 Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.			
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	5
		5, Appendix table 1	
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	5-6, appendix table 2
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	6
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	6
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	5-6
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	6
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consisterary (@g.re ²) for each material and combining results of studies, if done, including measures of	6

BMJ Open

PRISMA 2009 Checklist

Daga	1	of	S
Page		OT	2

Page 1 of 2			
Section/topic	opic # Checklist item		
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	5-6
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	7, fig. 1
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	7-13
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	7,9
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	10-13, fig 2,3
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	10-13
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	7,10
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	14, Fig. 4, 5
DISCUSSION	•	·	
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	14,15
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	15-17
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	19
FUNDING			
) Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	31

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. doi:10.1371/journal.pmed1000097

For more information, visit: <u>www.prisma-statement.org</u>. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml Page 2 of 2