PRIMARY COENZYME Q10 DEFICIENCY AND THE BRAIN
 
   

Primary Coenzyme Q10
Deficiency and the Brain

This section is compiled by Frank M. Painter, D.C.
Send all comments or additions to:
   Frankp@chiro.org
 
   

FROM:   Arch Neurol Biofactors 2003; 18 (1-4): 145–152

Naini A, Lewis VJ, Hirano M, DiMauro S

Department of Neurology,
Columbia University College of Physicians & Surgeons,
New York, NY 10032, USA.
abn2@columbia.edu


Our findings in 19 new patients with cerebellar ataxia establish the existence of an ataxic syndrome due to primary CoQ10 deficiency and (they were) responsive to CoQ10 therapy. As all patients presented cerebellar ataxia and cerebellar atrophy, this suggests a selective vulnerability of the cerebellum to CoQ10 deficiency. We investigated the regional distribution of coenzyme Q10 in the brain of adult rats and in the brain of one human subject. We also evaluated the levels of coenzyme Q9 (CoQ9) and CoQ10 in different brain regions and in visceral tissues of rats before and after oral administration of CoQ10. Our results show that in rats, amongst the seven brain regions studied, cerebellum contains the lowest level of CoQ. However, the relative proportion of CoQ10 was the same (about 30% of total CoQ) in all regions studied. The level of CoQ10 is much higher in brain than in blood or visceral tissue, such as liver, heart, or kidney. Daily oral administration of CoQ10 led to substantial increases of CoQ10 concentrations only in blood and liver. Of the four regions of one human brain studied, cerebellum again had the lowest CoQ10y concentration.

Return to Co-Q10

Since 1-04-2006

                  © 1995–2024 ~ The Chiropractic Resource Organization ~ All Rights Reserved